TY - JOUR A1 - Faghani, A. A1 - Gholami, M. F. A1 - Trunk, M. A1 - Müller, J. A1 - Pachfule, P. A1 - Vogl, S. A1 - Donskyi, Ievgen A1 - Li, M. A1 - Nickl, Philip A1 - Shao, J. A1 - Huang, M. R. S. A1 - Unger, Wolfgang A1 - Arenal, R. A1 - Koch, C. T. A1 - Paulus, B. A1 - Rabe, J. P. A1 - Thomas, A. A1 - Haag, R. A1 - Adeli, M. T1 - Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale JF - Journal of the American Chemical Society N2 - Covalent triazine frameworks are an emerging material class that have shown promising performance for a range of applications. In this work, we report on a metal-assisted and solvent-mediated reaction between calcium carbide and cyanuric chloride, as cheap and commercially available precursors, to synthesize two-dimensional triazine structures (2DTSs). The reaction between the solvent, dimethylformamide, and cyanuric chloride was promoted by calcium carbide and resulted in dimethylamino-s-triazine intermediates, which in turn undergo nucleophilic substitutions. This reaction was directed into two dimensions by calcium ions derived from calcium carbide and induced the formation of 2DTSs. The role of calcium ions to direct the two-dimensionality of the final structure was simulated using DFT and further proven by synthesizing molecular intermediates. The water content of the reaction medium was found to be a crucial factor that affected the structure of the products dramatically. While 2DTSs were obtained under anhydrous conditions, a mixture of graphitic material/2DTSs or only graphitic material (GM) was obtained in aqueous solutions. Due to the straightforward and gram-scale synthesis of 2DTSs, as well as their photothermal and photodynamic properties, they are promising materials for a wide range of future applications, including bacteria and virus incapacitation. KW - XPS KW - Triazine KW - 2D PY - 2020 DO - https://doi.org/10.1021/jacs.0c02399 VL - 142 IS - 30 SP - 12976 EP - 12986 PB - ACS American Chemical Society AN - OPUS4-51203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, P. A1 - Chakraborty, Gouri A1 - Roeser, J. A1 - Vogl, S. A1 - Rabeah, J. A1 - Thomas, A. T1 - Integrating Bifunctionality and Chemical Stability in Covalent Organic Frameworks via One-Pot Multicomponent Reactions for Solar-Driven H2O2 Production JF - Journal of the American Chemical Society N2 - Multicomponent reactions (MCRs) can be used to introduce different functionalities into highly stable covalent organic frameworks (COFs). In this work, the irreversible three-component Doebner reaction is utilized to synthesize four chemically stable quinoline-4-carboxylic acid DMCR-COFs (DMCR-1−3 and DMCR-1NH) equipped with an acid−base bifunctionality. These DMCR-COFs show superior photocatalytic H2O2 evolution (one of the most important industrial oxidants) compared to the imine COF analogue (Imine-1). This is achieved with sacrificial oxidants but also in pure water and under an oxygen or air atmosphere. Furthermore, the DMCR-COFs show high photostability, durability, and recyclability. MCR-COFs thus provide a viable materials’ platform for solar to chemical energy conversion. KW - Reactions KW - Bifunctionality KW - Postsynthetic modification KW - Multicomponent PY - 2022 DO - https://doi.org/10.1021/jacs.2c11454 SN - 0002-7863 VL - 145 IS - 5 SP - 2975 EP - 2984 PB - ACS Publications AN - OPUS4-56922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -