TY - JOUR A1 - Pauzon, C. A1 - Mishurova, Tatiana A1 - Fischer, M. A1 - Ahlström, J. A1 - Fritsch, Tobias A1 - Bruno, Giovanni A1 - Hryha, Eduard T1 - Impact of contour scanning and helium-rich process gas on performances of Alloy 718 lattices produced by laser powder bed fusion N2 - Contour scanning and process gas type are process parameters typically considered achieving second order effects compared to first order factors such as laser power and scanning speed. The present work highlights that contour scanning is crucial to ensure geometrical accuracy and thereby the high performance under uniaxial compression of complex Alloy 718 lattice structures. Studies of X-ray computed tomography visualizations of as-built and compression-strained structures reveal the continuous and smooth bending and compression of the walls, and the earlier onset of internal contact appearance in the denser lattices printed with contour. In contrast, the effect of addition of He to the Ar process gas appears to have limited influence on the mechanical response of the lattices and their microstructure as characterized by electron backscattered diffraction. However, the addition of He proved to significantly enhance the cooling rate and to reduce the amount of the generated spatters as evidenced by in situ monitoring of the process emissions, which is very promising for the process stability and powder reusability during laser powder bed fusion. KW - Additive manufacturing KW - Laser powder bed fusion KW - Gyroid lattice KW - Process atmosphere PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546632 SN - 0264-1275 VL - 215 SP - 110501 PB - Elsevier Ltd. AN - OPUS4-54663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -