TY - CHAP A1 - Mishra, K. B. A1 - Wehrstedt, Klaus-Dieter ED - Singh, A.P. ED - Agarwal, R. A. ED - Agarwal, A. K. ED - Dhar, A. ED - Shuklar, M. K. T1 - Peroxy-fuels: Burning behavior and potential applications in combustion engines N2 - In present chapter, the potential usage of peroxy-fuels (usually known as organic peroxides) either in technically pure or in a blended form in engine combustion processes are explored. Although as additives (in small quantities <5% to conventional fuels, e.g., diesel, gasoline) peroxy-fuels are well known for many years their commercial applications as a main or primary fuel are not investigated in detail as such except a few. Their thermal instability and energy density demand great care during processing, which restricts their commercial exploitation. However, once the issues with safety are resolved they can be much more advantageously employed than conventional fuels. Some of these advantages are significant amount of fuel saving, reduction in amount of inducted air, or even the complete absence of air, i.e., anaerobic combustion, smaller volume of combustion (chamber), oxygenated fuel quality, and low emissions. An idea to develop the components of an engine operating solely on peroxy-fuels is also introduced. The engine concept is based on single and multiple injectors in a cylinder with special material coating to ensure a temperature-controlled processing. KW - Peroxy-fuels KW - Hydrocarbons KW - Blends KW - Engine combustion KW - Engine performance PY - 2018 SN - 978-981-10-7517-9 U6 - https://doi.org/10.1007/978-981-10-7518-6_14 SN - 2522-8366 SN - 2522-8374 SP - 343 EP - 357 PB - Springer Nature Singapore AN - OPUS4-45274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilrich, Cordula A1 - Brandes, Elisabeth A1 - Michael-Schulz, Heike A1 - Schröder, Volkmar A1 - Schwarz, Silke A1 - Wehrstedt, Klaus-Dieter T1 - UN GHS ‒ Physical hazard classifications of chemicals: A critical review of combinations of hazard classes N2 - One of the fundamental principles of the UN-GHS (Globally Harmonized System of Classification and Labelling of Chemicals) is that all hazards of a chemical should be assigned and communicated. There is no general prioritization of hazards in the sense that certain hazard classes are not applicable if another one has been assigned. In contrast to health and environmental hazards, there are physical or chemical factors which preclude certain combinations of physical hazard classes. So far, there is no common understanding as to which combinations are relevant and which not. For example, should a pyrophoric liquid be classified as flammable liquid in addition, or is this redundant and unnecessary? In the course of the implementation of the GHS by countries or sectors and the actual application by industry all over the world, such questions become more and more important. This publication systematically discusses all combinations of the UN-GHS physical hazard classes and assesses them with regard to the relevance of possible simultaneous assignment to a chemical. For many of the combinations an unambiguous decision based on theGHS alone is not possible, thus confirming that the question which physical hazard classes might be assigned simultaneously to a chemical is not trivial. As one more milestone on the path to a globally harmonized system for the classification of hazardous chemicals, this should be discussed and ultimately solved on a global basis. It is the hope that this publication might serve as an impetus for such discussions. KW - UN-GHS KW - Globally Harmonized System of Classification and Labelling of Chemicals KW - Hazardous chemicals KW - Chemicals classification KW - Physical hazards PY - 2017 UR - https://www.sciencedirect.com/science/article/pii/S1871553217300336 U6 - https://doi.org/10.1016/j.jchas.2017.03.005 SN - 1871-5532 VL - 24 IS - 6 SP - 15 EP - 28 PB - Elsevier Inc. AN - OPUS4-42704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -