TY - JOUR A1 - Cooper, R. A1 - Bruno, Giovanni A1 - Shyam, A. A1 - Watkins, T. A1 - Pandey, A. A1 - Wheeler, M. T1 - Effect of microcracking on the uniaxial tensile response of beta-eucryptite ceramics: Experiments and constitutive model N2 - A constitutive model for the nonlinear or “pseudoplastic” mechanical behavior in a linear-elastic solid with thermally induced microcracks is developed and applied to experimental results. The model is termed strain dependent microcrack density approximation (SDMDA) and is an extension of the modified differential scheme that describes the slope of the stress-strain curves of microcracked solids. SDMDA allows a continuous variation in the microcrack density with tensile loading. Experimental uniaxial tensile response of β-eucryptite glass and ceramics with controlled levels of microcracking is reported. It is demonstrated that SDMDA can well describe the extent of non-linearity in the experimental uniaxial tensile response of β-eucryptite with varying levels of microcracking. The advantages of the SDMDA are discussed in regard to tensile loading. KW - Microcracking KW - β-eucryptite KW - Young's modulus KW - Modeling KW - Tensile behavior PY - 2017 U6 - https://doi.org/10.1016/j.actamat.2017.06.033 SN - 1359-6454 SN - 1873-2453 VL - 135 SP - 361 EP - 371 PB - Elsevier Ltd. AN - OPUS4-40859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -