TY - JOUR A1 - Rhode, Michael A1 - Steppan, Enrico A1 - Kannengießer, Thomas A1 - Steger, Jörg ED - Lippold, J. T1 - Effect of hydrogen on mechanical properties of heat affected zone of a reactor pressure vessel steel grade N2 - The steel grade 20MnMoNi5-5 (according to German DIN standard or 16MND5 according to French AFNOR standard) is widely applied in (weld) fabrication of reactor pressure vessel components. Thus, a wide range of welding technologies (like submerged arc welding (SAW) or tungsten inert gas (TIG)) is used resulting in different heat affected zone (HAZ) microstructures. During weld fabrication, the weld joints may take up hydrogen. Especially, the HAZ shows an increased susceptibility for a degradation of the mechanical properties in presence of hydrogen. In addition, the hydrogen-assisted degradation of mechanical properties is influenced by three main local factors: hydrogen concentration, microstructure, and load condition. Hence, the base material (BM) and two different simulated non-tempered as-quenched HAZ microstructures were examined using hydrogen-free and hydrogen-charged tensile specimens. The results indicate that the effect of hydrogen on the degradation is significantly increased in case of the HAZ compared to the BM. In addition, hydrogen has remarkable effect in terms of reduction of ductility. It was ascertained that the degradation of the mechanical properties increases in the order of BM, bainitic HAZ, and the martensitic HAZ. Scanning electron microscope (SEM) investigation showed a distinct change of the fracture topography depended on the microstructure with increasing hydrogen concentration in case of the as-quenched HAZ microstructures. KW - Mechanical properties KW - Pressure vessel steels KW - Heat affected zone KW - Hydrogen KW - Hydrogen embrittlement KW - Low alloy steels PY - 2016 UR - http://link.springer.com/article/10.1007/s40194-016-0325-9 U6 - https://doi.org/10.1007/s40194-016-0325-9 VL - 60 IS - 4 SP - 623 EP - 638 PB - Springer-Verlag GmbH CY - Heidelberg, Germany AN - OPUS4-36454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steppan, Enrico A1 - Mantzke, Philipp A1 - Steffens, Benjamin A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Thermal desorption analysis for hydrogen trapping in microalloyed high-strength steels N2 - Hydrogen can have an extreme degradation effects in steels, particularly concerning the mechanical properties. These effects can lead to hydrogen-assisted cracking in microalloyed high-strength steels during fabrication and/or operation in industrial applications. In order to study these effects, electrochemically charged tensile specimens were tested to elucidate the degradation of their properties. The carrier gas hot extraction (CGHE) method, which functionally combines a mass spectrometer with a thermal desorption analysis (TDA) process, was used for the detection of ultra-low diffusible hydrogen concentrations in the material specimens. The mass spectrometer provided rapid and automatic determination of hydrogen concentration, whereas the TDA presented the activation energy within the respective test specimen at the specific temperature. Additionally, specimen temperature was carefully monitored to reduce the evaluation error for local effusion peaks. A quenching and deformation dilatometer was used for the analysis of typical heat-affected zones during the welding process for a high reproducibility of the homogenous microstructures that were studied. The present work shows the interaction between hydrogen and lattice defects in different microalloyed materials and heat-affected zones of weldable fine-grained steels. These steels were prepared in a quenched and tempered condition and in a thermo-mechanically rolled condition. These preparations were made according to German standard DIN EN 10025-6 and to DIN EN 10149-2, respectively. The trapping characteristics of two steel grades, S690QL and S700MC, were studied with respect to the activation energy dependent on carbon content and microalloying elements such as Ti, Nb, Mo, Cr, and V. The two steel grades exhibited several types of traps: carbide formations, dislocations, and/or grain boundaries were common, which can influence activation energy and hydrogen solubility. The type and dimension of inclusions or particles also affected the hydrogen trapping behavior. A decrease of carbon and specific alloying elements in thermo-mechanically hot rolled steels led to a change in the activation energy binding the trapped hydrogen. This thermo-mechanically hot rolled steel revealed an increased interaction between hydrogen and precipitations. The higher carbon content in the quenched and tempered steel led to a higher interaction between hydrogen and iron carbide, specifically in the martensitic phase. Furthermore, the trapping behavior in heat-affected zones showed a significant increase in activation energy, especially in the coarse-grained microstructure. These previously mentioned various effects were studied to better understand the degradation of mechanical properties in these two steels. KW - Microalloyed steels KW - Hydrogen embrittlement KW - Heating KW - Chemical analysis KW - Microstructure KW - Heat-affected zone PY - 2017 U6 - https://doi.org/10.1007/s40194-017-0451-z SN - 0043-2288 SN - 1878-6669 VL - 61 IS - 4 SP - 637 EP - 648 PB - Springer CY - Berlin Heidelberg AN - OPUS4-40190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -