TY - JOUR A1 - Sänger, Johanna Christiane A1 - Pauw, Brian Richard A1 - Riechers, Birte A1 - Zocca, Andrea A1 - Rosalie, Julian A1 - Maaß, Robert A1 - Sturm, Heinz A1 - Günster, Jens T1 - Entering a new dimension in powder processing for advanced ceramics shaping N2 - Filigree structures can be manufactured via two-photon-polymerization (2PP) operating in the regime of non-linear light absorption. For the first time it is possible to apply this technique to the powder processing of ceramic structures with a feature size in the range of the critical defect size responsible for brittle fracture and, thus, affecting fracture toughness of high-performance ceramics. In this way, tailoring of advanced properties can be achieved already in the shaping process. Traditionally, 2PP relies on transparent polymerizable resins, which is diametrically opposed to the usually completely opaque ceramic resins and slurries. Here we present a transparent and photocurable suspension of nanoparticles (resin) with very high mass fractions of yttria-stabilized zirconia particles (YSZ). Due to the extremely well dispersed nanoparticles, scattering of light can be effectively suppressed at the process-relevant wavelength of 800 nm. Sintered ceramic structures with a resolution of down to 500 nm were obtained. Even at reduced densities of 1 to 4 g/cm³, the resulting compressive strength with 4,5 GPa is equivalent or even exceeding bulk monolithic yttria stabilized zirconia. A ceramic metamaterial is born, where the mechanical properties of yttria stabilized zirconia are altered by changing geometrical parameters and gives access to a new class of ceramic materials. KW - Two-photon-polymerization KW - Ceramics KW - Powder processing KW - Transparency KW - Meta material KW - Yttria stabilized zirconia PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-564598 SN - 1521-4095 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chambers, M. S. A1 - Hunter, R. D. A1 - Hollamby, M. J. A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Danks, A. E. A1 - Schnepp, Z. T1 - In Situ and Ex Situ X‑ray Diffraction and Small-Angle X‑ray Scattering Investigations of the Sol−Gel Synthesis of Fe3N and Fe3C N2 - Iron nitride (Fe3N) and iron carbide (Fe3C) nanoparticles can be prepared via sol−gel synthesis. While sol−gel methods are simple, it can be difficult to control the crystalline composition, i.e., to achieve a Rietveld-pure product. In a previous in situ synchrotron study of the sol−gel synthesis of Fe3N/Fe3C, we showed that the reaction proceeds as follows: Fe3O4 → FeOx → Fe3N → Fe3C. There was considerable overlap between the different phases, but we were unable to ascertain whether this was due to the experimental setup (side-on heating of a quartz capillary which could lead to thermal gradients) or whether individual particle reactions proceed at different rates. In this paper, we use in situ wide- and small-angle X-ray scattering (wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS)) to demonstrate that the overlapping phases are indeed due to variable reaction rates. While the initial oxide nanoparticles have a small range of diameters, the size range expands considerably and very rapidly during the oxide−nitride transition. This has implications for the isolation of Rietveld-pure Fe3N, and in an extensive laboratory study, we were indeed unable to isolate phasepure Fe3N. However, we made the surprising discovery that Rietveld-pure Fe3C nanoparticles can be produced at 500 °C with a sufficient furnace dwell time. This is considerably lower than the previous reports of the sol−gel synthesis of Fe3C nanoparticles. KW - Small-angle X-ray Scattering KW - SAXS KW - Diffraction KW - XRD KW - Scattering KW - Sol-gel KW - Iron nitride KW - Nanoparticles KW - Iron carbide KW - Catalyst KW - In-situ KW - Ex-situ KW - Synthesis KW - Synchrotron PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-548226 VL - 61 IS - 18 SP - 6742 EP - 6749 PB - ACS Publications CY - Washington AN - OPUS4-54822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals N2 - In recent years, we have come to appreciate the astounding intricacies associated with the formation of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that the nucleation of calcium sulfate systems occurs nonclassically, involving the aggregation and reorganization of nanosized prenucleation species. In recent work, we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant micrometer-sized CaSO4 crystals. This property of CaSO4 minerals provides us with the unique opportunity to search for evidence of nonclassical nucleation pathways in geological environments. In particular, we focused on large anhydrite Crystals extracted from the Naica Mine in Mexico. We were able to shed light on this mineral's growth history by mapping defects at different length scales. Based on this, we argue that the nanoscale misalignment of the structural subunits, observed in the initial calcium sulfate crystal seeds, propagates through different length scales both in morphological, as well as in strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nonclassical nucleation mechanism introduces a “seed of imperfection,” which leads to a macroscopic “single” crystal whose fragments do not fit together at different length scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very welldefined walls/edges. However, at the same time, the material retains in part its single crystal nature. KW - Calcium sulfate KW - Anhydrite KW - Mesocrystal KW - Nucleation KW - Naica PY - 2021 U6 - https://doi.org/10.1073/pnas.2111213118 SN - 0027-8424 VL - 118 IS - 48 SP - 1 EP - 11 PB - National Academy of Sciences (USA) CY - Washington AN - OPUS4-53820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Z. A1 - Villa Santos, C. A1 - Legrand, A. A1 - Haase, F. A1 - Hara, Y. A1 - Kanamori, K. A1 - Aoyama, T. A1 - Urayama, K. A1 - Doherty, C. M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Colon, Y. J. A1 - Furukawa, S. T1 - Multiscale structural control of linked metal–organic polyhedra gel by aging-induced linkage-reorganization N2 - Assembly of permanently porous metal–organic polyhedra/cages (MOPs) with bifunctional linkers leads to soft supramolecular networks featuring both porosity and processability. However, the amorphous nature of such soft materials complicates their characterization and thus limits rational structural control. Here we demonstrate that aging is an effective strategy to control the hierarchical network of supramolecular gels, which are assembled from organic ligands as linkers and MOPs as junctions. Normally, the initial gel formation by rapid gelation leads to a kinetically trapped structure with low controllability. Through a controlled post-synthetic aging process, we show that it is possible to tune the network of the linked MOP gel over multiple length scales. This process allows control on the molecular-scale rearrangement of interlinking MOPs, mesoscale fusion of colloidal particles and macroscale densification of the whole colloidal network. In this work we elucidate the relationships between the gel properties, such as porosity and rheology, and their hierarchical structures, which suggest that porosity measurement of the dried gels can be used as a powerful tool to characterize the microscale structural transition of their corresponding gels. This aging strategy can be applied in other supramolecular polymer systems particularly containing kinetically controlled structures and shows an opportunity to engineer the structure and the permanent porosity of amorphous materials for further applications. KW - SAXS KW - Metal-organic polyhedra KW - Structural control PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532309 SN - 1478-6524 SN - 1742-2183 VL - 12 IS - 38 SP - NIL_1 EP - NIL_9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-53230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - The MOUSE project: A meticulous approach for obtaining traceable, wide-range X-ray scattering information N2 - Herein, we provide a "systems architecture"-like overview and detailed discussions of the methodological and instrumental components that, together, comprise the "MOUSE" project (Methodology Optimization for UltrafineStructure Exploration). The MOUSE project provides scattering information on a wide variety of samples, with traceable dimensions for both the scattering vector (q) and the absolute scattering cross-section (I). The measurable scattering vector-range of 0.012≤ q (nm-1) ≤ 92, allows information across a hierarchy of structures with dimensions ranging from ca. 0.1 to 400 nm. In addition to details that comprise the MOUSE project, such as the organisation and traceable aspects, several representative examples are provided to demonstrate its flexibility. These include measurements on alumina membranes, the tobacco mosaic virus, and dual-source information that overcomes fluorescence limitations on ZIF-8 and iron-oxide-containing carbon catalyst materials. KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Traceability KW - Wide-range KW - Data curation KW - FAIR KW - Uncertainties KW - Nanomaterials KW - Nanometrology PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-528669 VL - 16 IS - 6 SP - 1 EP - 50 PB - IOP CY - Bristol, UK AN - OPUS4-52866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Schmidt, J. A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Hierarchically porous and mechanically stable monoliths from ordered mesoporous silica and their water filtration potential N2 - Mechanically stable structures with interconnected hierarchical porosity combine the benefits of both small and large pores, such as high surface area, pore volume, and good mass transport capabilities. Hence, lightweight micro-/meso-/macroporous monoliths are prepared from ordered mesoporous silica COK-12 by means of spark plasma sintering (SPS, S-sintering) and compared to conventionally (C-) sintered monoliths. A multi-scale model is developed to fit the small angle X-ray scattering data and obtain information on the hexagonal lattice parameters, pore sizes from the macro to the micro range, as well as the dimensions of the silica population. For both sintering techniques, the overall mesoporosity, hexagonal pore ordering, and amorphous character are preserved. The monoliths' porosity (77–49%), mesopore size (6.2–5.2 nm), pore volume (0.50–0.22 g cm-3 ), and specific surface area (451–180 m2 g-1) decrease with increasing processing temperature and pressure. While the difference in porosity is enhanced, the structural parameters between the C-and S-sintered monoliths are largely converging at 900 C, except for the mesopore size and lattice parameter, whose dimensions are more extensively preserved in the S-sintered monoliths, however, coming along with larger deviations from the theoretical lattice. Their higher mechanical properties (biaxial strength up to 49 MPa, 724 MPa HV 9.807 N) at comparable porosities and ability to withstand ultrasonic treatment and dead-end filtration up to 7 bar allow S-sintered monoliths to reach a high permeance (2634 L m-2 h-1 bar-1), permeability (1.25 x 10^-14 m2), and ability to reduce the chemical oxygen demand by 90% during filtration of a surfactant-stabilized oil in water emulsion, while indicating reasonable resistance towards fouling. KW - SAXS KW - Hierarchically porous KW - Silica KW - Water filtration PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555928 SN - 2516-0230 SP - 1 EP - 17 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-55592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deumer, J. A1 - Pauw, Brian Richard A1 - Marguet, S. A1 - Skroblin, D. A1 - Taché, O. A1 - Krumrey, M. A1 - Gollwitzer, C. T1 - Small-angle X-ray scattering: characterization of cubic Au nanoparticles using Debye’s scattering formula N2 - A versatile software package in the form of a Python extension, named CDEF (computing Debye’s scattering formula for extraordinary form factors), is proposed to calculate approximate scattering profiles of arbitrarily shaped nanoparticles for small-angle X-ray scattering (SAXS). CDEF generates a quasi-randomly distributed point cloud in the desired particle shape and then applies the open-source software DEBYER for efficient evaluation of Debye’s scattering formula to calculate the SAXS pattern (https://github.com/j-from-b/CDEF). If self-correlation of the scattering signal is not omitted, the quasi-random distribution provides faster convergence compared with a true-random distribution of the scatterers, especially at higher momentum transfer. The usage of the software is demonstrated for the evaluation of scattering data of Au nanocubes with rounded edges, which were measured at the four-crystal monochromator beamline of PTB at the synchrotron radiation facility BESSY II in Berlin. The implementation is fast enough to run on a single desktop computer and perform model fits within minutes. The accuracy of the method was analyzed by comparison with analytically known form factors and verified with another implementation, the SPONGE, based on a similar principle with fewer approximations. Additionally, the SPONGE coupled to McSAS3 allows one to retrieve information on the uncertainty of the size distribution using a Monte Carlo uncertainty estimation algorithm. KW - X-ray scattering KW - SAXS KW - Non-spherical nanoparticles KW - Nanoparticles KW - Nanomaterials KW - Debye scattering equation KW - Simulation KW - Data fitting PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-557652 VL - 55 IS - Pt 4 SP - 993 EP - 1001 PB - International Union of Crystallography CY - Chester, England AN - OPUS4-55765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hollamby, M. J. A1 - Smith, C. F. A1 - Britton, M. M. A1 - Danks, A. E. A1 - Schnepp, Z. A1 - Grillo, I. A1 - Pauw, Brian Richard A1 - Kishimura, A. A1 - Nakanishi, T. T1 - The aggregation of an alkyl–C60 derivative as a function of concentration, temperature and solvent type N2 - Contrast-variation small-angle neutron scattering (CV-SANS), small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) measurements of diffusion and isothermal titration calorimetry (ITC) are used to gain insight into the aggregation of an alkyl–C60 derivative, molecule 1, in n-hexane, n-decane and toluene as a function of concentration and temperature. Results point to an associative mechanism of aggregation similar to other commonly associating molecules, including non-ionic surfactants or asphaltenes in non-aqueous solvents. Little aggregation is detected in toluene, but small micelle-like structures form in n-alkane solvents, which have a C60-rich core and alkyl-rich shell. The greatest aggregation extent is found in n-hexane, and at 0.1 M the micelles of 1 comprise around 6 molecules at 25 °C. These micelles become smaller when the concentration is lowered, or if the solvent is changed to n-decane. The solution structure is also affected by temperature, with a slightly larger aggregation extent at 10 °C than at 25 °C. At higher concentrations, for example in solutions of 1 above 0.3 M in n-decane, a bicontinuous network becomes apparent. Overall, these findings aid our understanding of the factors driving the assembly of alkyl–π-conjugated hydrophobic amphiphiles such as 1 in solution and thereby represent a step towards the ultimate goal of exploiting this phenomenon to form materials with well-defined order. KW - Complex Molecular Systems KW - Supramolecules KW - Scattering PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-442977 VL - 20 IS - 5 SP - 3773 EP - 3380 PB - RSC AN - OPUS4-44297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Yin, Huajie A1 - Lohstroh, W. A1 - Harrison, W. A1 - Budd, P.M. A1 - Pauw, Brian Richard A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity - the Boson peak of PIM-1 N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, the vibrational density of states (VDOS) for PIM-1, the prototypical polymer with intrinsic microporosity, is investigated by means of inelastic neutron scattering. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. For an annealed PIM-1 sample, the Boson peak shifts to higher frequencies in comparison to the un-annealed sample. These changes in the VDOS of the annealed PIM-1 sample are related to changes in the microporous structure as confirmed by X-ray scattering. KW - Polymers KW - Boson peak KW - Neutron scattering KW - Physical aging KW - Polymer of intrinsic microporosity PY - 2018 U6 - https://doi.org/10.1039/C7CP07141H SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 3 SP - 1355 EP - 1363 PB - The Royal Society of Chemistry AN - OPUS4-43808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Pauw, Brian Richard A1 - Qu, Xintong A1 - Schönhals, Andreas T1 - Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite N2 - The complex effects of nanoparticles on a thermosetting material based on an anhydride cured DGEBA/Boehmite nanocomposite with different particle concentrations is considered. A combination of X-ray scattering, calorimetry, including fast scanning calorimetry as well as temperature modulated calorimetry and dielectric spectroscopy, was employed to study the structure, the vitrification kinetics and the molecular dynamics of the nanocomposites. For the first time in the literature for an epoxy-based composite a detailed analysis of the X-ray data was carried out. Moreover, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking density, indicated by two separate dynamic glass transitions. The glass transition temperature decreases with increasing nanoparticle concentration, resulting from a change in the crosslinking density. Moreover, on the one hand, for nanocomposites the incorporation of nanofiller increased the number of mobile segments for low nanoparticle concentrations, due to the altered crosslinking density. On the other hand, for higher loading degrees the number of mobile segments decreased, resulting from the formation of an immobilized interphase (RAF). The simultaneous mobilization and immobilization of the segmental dynamics cannot be separated unambiguously. Taking the sample with highest number of mobile segments as reference state it was possible to estimate the amount of RAF. KW - Nanocomposite PY - 2020 U6 - https://doi.org/10.1039/d0sm00744g SN - 1744-683X VL - 16 IS - 23 SP - 5406 EP - 5421 PB - Royal Chemical Society AN - OPUS4-50883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -