TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. A1 - Kadoke, Daniel A1 - Fischer, Michael A1 - Kohlhoff, Harald ED - Pastramă, Ştefan Dan ED - Constantinescu, Dan Mihai T1 - A Small-Scale Test Bridge for Measurement and Model-based Structural Analysis N2 - The Measurement- and Model-based Structural Analysis (MeMoS) integrates a finite element model into least squares adjustment and thus allows to evaluate a mechanical model and measurements in a combined analysis. To examine the capability to detect and localise damage using this integrated analysis MeMoS, a small-scale truss bridge made of aluminium profiles is built as a test specimen for this purpose. T2 - 35th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Structural analysis KW - Damage detection and localisation KW - Finite element method KW - Photogrammetry KW - Adjustment calculation PY - 2019 UR - http://www.sciencedirect.com/science/article/pii/S2214785319304894 U6 - https://doi.org/10.1016/j.matpr.2019.03.130 SN - 2214-7853 VL - 12 IS - 2 SP - 319 EP - 328 PB - Elsevier Ltd. AN - OPUS4-48053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. ED - Nicoletto, G. ED - Pastrama, S. D. ED - Emri, I. T1 - Inverse finite element adjustment of material parameters from integrated analysis of displacement field measurement N2 - The determination of material parameters from displacement field measurement is being examined for linear elastic solid. A frequently used approach to compute material constants can be found in many studies. Even though they presented the approach in many different variations, but in the end they are essentially based on the same algorithm: Parameters are iteratively tuned until the computed results are in accordance with the measurements. The main drawback of this approach is that mainly commercial software is used that hinders us to investigate its inner evaluation process. This leads to the question, how the results from this commercial software can be trusted. On the contrary to these debatable approaches, we present a method that inverts the procedure of finite element method by using the most general model for a least-squares adjustment – the GAUSS-HELMERT Model. T2 - 32nd DANUBIA ADRIA SYMPOSIUM on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Integrated analysis KW - Inverse problem KW - Finite element method KW - Least-squares adjustment KW - Model and measurement based analysis PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S2214785316002091 U6 - https://doi.org/10.1016/j.matpr.2016.03.004 SN - 2214-7853 VL - 3 IS - 4 SP - 1211 EP - 1215 PB - Elsevier Ltd. AN - OPUS4-35629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Burger, M. A1 - Neitzel, F. ED - Zemčík, R. T1 - A four-point bending test apparatus for measurement- and model-based structural analysis N2 - By means of a small-scale truss bridge, the ability of the Measurement- and Model-based Structural Analysis to detect and localise damage was examined in. Although there was no noteworthy difficulty in detecting damage, it turned out that damage localisation responds sensitively to systematic influences, i.e. non-modelled properties of the mechanical model. Therefore, another experiment is being conducted to re-examine the Measurement- and Model-based Structural Analysis. For this purpose, the bending test is carried out as it has been already theoretically respectively numerically discussed in. In this attempt, the systematic influences such as residual stress are kept as low as possible. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Damage detection KW - Adjustment calculation KW - Finite element method KW - Integrated analysis PY - 2020 UR - http://www.sciencedirect.com/science/article/pii/S2214785320326432 U6 - https://doi.org/10.1016/j.matpr.2020.04.028 SN - 2214-7853 VL - 32 IS - 2 SP - 156 EP - 161 PB - Elsevier Ltd. AN - OPUS4-51551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. ED - Emri, Igor T1 - Approximate model for geometrical complex structures N2 - Many engineering structures are nowadays made of composite materials or metal foam. These modern engineering materials contain very complex inner geometry. To simulate the deformational behaviour of these structures often requires a high number of discretisation elements. This in turn yields a very large system of linear equations that are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to find an approach to overcome this obstacle. In this paper a numerical method is proposed to find an approximate substitute model for geometrical complex structures. T2 - 33rd Danubia Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Adjustment calculation KW - Finite element method KW - Substitute model KW - Complex structures PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S2214785317308593 U6 - https://doi.org/10.1016/j.matpr.2017.06.084 SN - 2214-7853 VL - 4 IS - 5, Part 1 SP - 5995 EP - 6000 PB - Elsevier CY - Amsterdam, Netherlands AN - OPUS4-42794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -