TY - JOUR A1 - Qiao, Linan A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe A1 - Keller, Christian T1 - Introduction of a Power Law Time-Temperature Equivalent Formulation for the Description of Thermorheologically Simple and Complex Behavior N2 - Abstract: In this work, a conceptual framework is suggested for analyzing thermorheologically simple and complex behavior by using just one approach. Therefore, the linear relation between master time and real time which is required in terms of the time-temperature superposition principle was enhanced to a nonlinear equivalent relation. Furthermore, we evaluate whether there is any relation among well-known existing time-temperature equivalent formulations which makes it possible to generalize different existing formulations. For this purpose, as an example, the power law formulation was used for the definition of the master time. The method introduced here also contributes a further framework for a unification of established time-temperature equivalent formulations, for example the time-temperature superposition principle and time-temperature parameter models. Results show, with additional normalization conditions, most of the developed time-temperature parameter models can be treated as special cases of the new formulation. In the aspect of the arrow of time, the new defined master time is a bended arrow of time, which can help to understand the corresponding physical meaning of the suggested method. KW - bended arrow of time KW - time-temperature superposition principle KW - time-temperature equivalent formulation PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543800 VL - 15 IS - 3 SP - 1 EP - 11 PB - MDPI AN - OPUS4-54380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nagelschmidt, Sven A1 - Probst, Ulrich A1 - Völzke, Holger A1 - Wolff, Dietmar T1 - Long-term investigations of metal seals for storage casks of radioctive materials N2 - The Bundesanstalt für Materialforschung und –prüfung (BAM) is a federal institute for materials research and testing in Germany and has been involved in the qualification and safety evaluation procedures of metal seals from the early beginning of the interim storage licensing procedures for radioactive materials, stored in dual purpose casks. Regarding this subject, BAM investigates the long-term behavior of metal seals under the influence of temperature using experimental data and analytical approaches. The development of numerical models is in progress as well. Systematic experimental investigations performed by BAM indicate a continuous decrease of the remaining seal force and the usable resilience considering the leak tightness. Hence, there is a fundamental interest of describing time and temperature dependency to gain predictable values for the long-term behavior and to achieve reliable results with help of short-term tests. The paper gives an overview about the sealing principle, test program and test results of metal seals of the type HELICOFLEX® HN200. The aging effect, respectively the long-term behavior in dependency of time and temperature, are introduced for two different outer liner materials, aluminum and silver. T2 - PVP ASME Conference CY - Vancouver, Canada DA - 17.07.2016 KW - Long-Term Behaviour KW - Metal Seal KW - Metal Gasket PY - 2016 SN - 978-0-7918-5045-9 VL - 7 SP - 63596-1 EP - 63596-5 AN - OPUS4-38039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -