TY - JOUR A1 - Matamoros-Veloza, A. A1 - Stawski, Tomasz A1 - Vargas, S. A1 - Neville, A. T1 - Study of a Local Structure at the Interface between Corrosion Films and Carbon Steel Surface in Undersaturated CO2 Environments JF - ACS Omega N2 - Industries transporting CO2 gas-saturated fluids have infrastructures made of carbon steel. This is a good material with great mechanical properties but prone to corrosion and potential failure. Corrosion in sweet environments involves the formation of FeCO3 as a corrosion film, which is recognized to play a protective role under certain conditions. This work on the dissolution of corrosion films in sweet environments, under acidic and undersaturated conditions, demonstrates that the effects on the integrity of steel are far more significant than the damage observed on the surface of the corrosion film. Our results prove that dissolution of FeCO3 involved the presence of an amorphous phase, the intermediate formation of FeCl2 or FeCl+, and the presence of a phase with short distance atom–atom correlations. The amorphous phase was identified as a mixture of retained γ-Fe and Fe3C. Partially broken α-Fe and Fe3C structures were identified to prove the damage on the material, confirming the interface zone without evident damage on the corrosion film. Dissolution affected both the α-Fe and FeCO3, with the lattice [102̅] from the FeCO3 crystalline structure being the fastest to dissolve. The damage of steel at the molecular scale was evident at the macroscale with pit depths of up to 250 μm. The impact on the integrity of steel can be, therefore, more drastic than frequently reported in industrial operations of CO2 transport industries that use cleaning procedures (e.g., acid treatment, pigging) as part of their operational activities. KW - Steel KW - Corrosion KW - Siderite KW - Diffraction KW - Pair distribution function KW - Synchrotron PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572156 DO - https://doi.org/10.1021/acsomega.2c07631 SN - 2470-1343 VL - 8 IS - 9 SP - 8497 EP - 8504 PB - ACS AN - OPUS4-57215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -