TY - JOUR A1 - Bettge, Dirk A1 - Schmies, Lennart T1 - Die Fraktographische Online-Datenbank der AG Fraktographie – Entwicklungsstand und Planung T1 - The WG Fractography Online Database – Stage of Development and Planning JF - Practical Metallography N2 - Die AG Fraktographie im DVM/DGM-Gemeinschaftsgremium „Elektronenmikroskopie in der Materialforschung“ betreibt seit 2013 eine fraktographische online-Datenbank („FractoDB“), die für das interessierte Fachpublikum kostenfrei zur Verfügung steht. Die Analyse und Bewertung von Bruchflächen und der darauf befindlichen Bruchmerkmale ist ein wichtiger Teilaspekt der Schadensanalyse bei der Suche nach Schadensmechanismen und Schadensursachen. Risse und Brüche an realen Bauteilen können nur dann bewertet werden, wenn gut dokumentierte Vergleichsbrüche aus Laborversuchen zur Verfügung stehen, sei es an Proben oder an Vergleichs-Bauteilen. Daher trägt die AG Fraktographie Bildmaterial zusammen, führt systematisch Laborversuche und Ringversuche durch und analysiert Brüche aus Schadensfällen. Die gewonnenen Daten werden zu Datensätzen zusammengestellt und über die Datenbank zugänglich gemacht. Derzeit ist ein Bestand von über 400 Datensätzen mit insgesamt über 4.500 Bildern verfügbar, welcher durchsucht werden kann und in Anlehnung an die VDI 3822 organisiert ist. Weitere Aktivitäten der AG Fraktographie, die in der FractoDB abgebildet werden, sind u.a. die Entwicklung einer fraktographischen Symbolik und die Analyse von Bruchmerkmalen mittels Machine Learning. Über die aktuellen Ergebnisse und Planungen wird berichtet. N2 - Since 2013, the AG Fraktographie (Working Group (WG) Fractography) in the DVM/DGM Joint Committee “Elektronenmikroskopie in der Materialforschung” (Electron Microscopy in Materials Research) maintains a fractographic online database (“FractoDB”) available to interested professionals. When it comes to identifying failure mechanisms and causes of damage, the analysis and evaluation of fracture surfaces and their characteristics constitute important aspects of the failure analysis. Cracks and fractures in real components can only be assessed if well-documented comparative fractures from laboratory tests are available – be it in samples or in comparison components. The WG Fractography therefore gathers image material, systematically carries out laboratory and round robin tests, and analyzes fractures from damage cases. From the thus obtained data, datasets are compiled and made available via the database. Currently, a browsable inventory of more than 400 datasets with a total of more than 4500 images is available. It is organized in line with guideline VDI 3822. Other activities of the WG Fractography represented in the FractoDB include, amongst others, the development of a fractographic set of symbols and the analysis of fracture characteristics using machine learning. This contributbution reports on latest results and plans. KW - Fraktographie KW - Datenbank KW - Schadensanalyse KW - Bruchflächen KW - Machine Learning PY - 2023 DO - https://doi.org/10.1515/pm-2023-0048 SN - 0032-678X VL - 60 IS - 9 SP - 569 EP - 579 PB - De Gruyter CY - Berlin AN - OPUS4-58200 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmies, Lennart A1 - Hemmleb, Matthias A1 - Bettge, Dirk T1 - Relevant input data for crack feature segmentation with deep learning on SEM imagery and topography data JF - Engineering Failure Analysis N2 - Fractography plays a critical role in failure analysis of engineering components and has a considerable importance for safety investigations. Usually, the interpretation of fracture surfaces is done by experts with the help of literature and experimental data, that requires a lot of experience. The use of deep learning (DL) with neural networks in failure analysis becomes more and more relevant with the rapidly developing possibilities. Especially, the modern network architectures can assist fractographers in determining various fracture features on SEM images of the fracture surfaces. The basis for the best possible evaluation is the understanding of the influence of the input data used for training deep neural networks (DNN). Therefore, this study discusses the influence of the selection of the input data used for the prediction quality of these networks in order to take this into account for future data acquisition. Specimens of various metallic materials were subjected to fatigue cracking experiment under laboratory conditions. The fractured surfaces were then imaged using various modes or detectors (such as SE, BSE and topography) in SEM, and those captured images were used to create a training data set. The relevance of the individual data for the quality of the prediction is determined by a specific combination of the different detector data. For the training, the well-established architecture of a UNet-ResNet34 with a fixed set of hyperparameters is used. It has been found in this present study that the combination of all input data significantly increases the prediction accuracy, whereby even the combination of SE and BSE data provides considerable advantages over the exclusive use of SE images. KW - Fractography KW - Machine Learning KW - Deep Learning KW - KI PY - 2023 DO - https://doi.org/10.1016/j.engfailanal.2023.107814 VL - 156 SP - 1 EP - 8 PB - Elsevier AN - OPUS4-58918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -