TY - JOUR A1 - Abdelkhalik, A. A1 - Askar, Enis A1 - Markus, D. A1 - Stolz, T. A1 - Brandes, E. A1 - Zakel, S. T1 - Explosion regions of 1,3-dioxolane/nitrous oxide and 1,3-dioxolane/air with different inert gases - Experimental data and numerical modelling JF - Journal of Loss Prevention in the Process Industries N2 - In this study, experimental determination and modelling investigations for the explosion regions of 1,3-dioxolane/inert gas/N2O and 1,3-dioxolane/inert gas/air mixtures were carried out and compared. The experimental measurements were carried out at 338 K and atmospheric pressure according to EN1839 method T using the inert gases N2, CO2, He and Ar. The results showed that the ratio of the lower explosion limit in N2O (LELN2O) to the lower explosion limit in air (LELair) is 0.52 and the ratio of the maximum oxygen content in air (MOCair) to the limiting oxidizer fraction in nitrous oxide (LOFN2O) is 0.36 ± 0.02 independent of the inert gas. When comparing the inert gas amount at the apex based on the pure oxidizing component, which is O2 in case of air, N2O-containing mixtures need less inert gas to reach the limiting oxidizer quantity whereas the efficiency of inert gases is in the same order. The coefficients of nitrogen equivalency however were found to differ to some extent. The explosion regions of 1,3-dioxolane/inert gas/oxidizer mixtures were modelled using the calculated adiabatic flame temperature profile (CAFTP) method as well as corrected adiabatic flame temperatures. The results indicate good agreement with experimental data for CO2, N2 and Ar- containing mixtures. The noticeable deviations that occur when He is the inert gas are due to the lacking transport data of that mixture. KW - Explosion limits KW - Flammability KW - CAFTP KW - Adiabatic Flame Temperatures PY - 2021 DO - https://doi.org/10.1016/j.jlp.2021.104496 SN - 0950-4230 VL - 71 SP - 4496 PB - Elsevier Ltd AN - OPUS4-52849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdelkhalik, A. A1 - Askar, Enis A1 - Markus, D. A1 - Brandes, E. A1 - El-Sayed, I. A1 - Hassan, M. A1 - Nour, M. A1 - Stolz, T. T1 - Explosion regions of propane, isopropanol, acetone, and methyl acetate/inert gas/air mixtures JF - Journal of Loss Prevention in the Process Industries N2 - The explosion regions for propane, isopropanol, acetone, and methyl acetate with air in the presence of nitrogen, argon, helium, and carbon dioxide were determined experimentally according to EN 14756/EN1839, method T. Except for propane, all the measurements were executed at 323 K and 1 bar. Propane experiments were carried out at 293 K and 1 bar. The results show that for the same type of inert gas, propane, isopropanol, and acetone have great closeness concerning the concentration of the inert gas at the apex of the explosion envelope in a ternary diagram with air as oxidizer. This leads to consistency in the limiting oxygen concentration (LOC) and minimum required amount of inert gas (MAI) values. Concerning methyl acetate, the apex was always reached at higher percentages of inert gases compared with the other fuels. This can be attributed to the presence of two oxygen atoms inside the chemical structure. Calculation of the explosion regions was carried out based on calculated adiabatic flame temperature (CAFT) method. The flame temperatures for the experimentally determined fuel/air/N2 mixtures were calculated. Then, these temperatures were used to predict the explosion limits of similar mixtures with other inert gases than nitrogen. The modeling results show reasonable agreement with the experimental results. KW - Flammability limits KW - Model of constant adiabatic flame temperatures (CAFT) KW - Inertisation KW - Explosion protection PY - 2016 DO - https://doi.org/10.1016/j.jlp.2016.04.001 SN - 0950-4230 VL - 2016/43 SP - 669 EP - 675 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-37996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdelkhalik, A. A1 - Askar, Enis A1 - Markus, D. A1 - Brandes, E. A1 - Stolz, T. T1 - Explosion regions of acetone and alcohol/inert gas/air mixtures at high temperatures and atmospheric pressure JF - Journal of Loss Prevention in the Process Industries N2 - The explosion regions of 1-propanol, 2-propanol, acetone and 1-butanol in air were measured in the presence of CO2, He, N2 and Ar in accordance with EN1839 method T at high temperatures and at atmospheric pressure. The experimental results show that 1-propanol, 2-propanol and acetone have very similar lower explosion limits (LELs). 1-Butanol shows a slightly wider explosion area near the LEL line. In addition, the explosion regions of all combustible/inert gas/air mixtures were calculated with the method of constant adiabatic flame temperature profiles (CAFTP), using the flame temperature profile along the explosion region boundary curve of each combustible/N2/air mixture as a reference to determine the explosion regions of combustible/inert gas/air mixtures with inert gases other than N2 at different initial temperatures. To calculate the explosion regions for systems containing He, the calculation method was modified to include the very different physical transport properties of He. Moreover, the procedure for calculating the apexes in the ternary explosion diagrams was modified. The calculation results show good agreement with the experimental results. KW - Explosion limits KW - Elevated temperatures KW - Alcohols KW - CAFTP KW - Acetone PY - 2019 DO - https://doi.org/10.1016/j.jlp.2019.103958 SN - 0950-4230 VL - 62 SP - 103958, 1 EP - 8 PB - Elsevier AN - OPUS4-49030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -