TY - CONF A1 - Omara, Shereen A1 - Turky, Gamal A1 - Rehim, Mona A1 - Schönhals, Andreas T1 - Hyperbranched PAMAM/ Kaolinite Nanocomposites: Decoupling phenomenon and conductivity mechanism N2 - Increasing demands of the daily life requires a continuous discovering of new and tailored properties of materials that can be utilized in covering the requirements in several fields. Hyperbranched polymers (HBPs) are macromolecules that are characterized by a highly branched structure and multiplicity of reactive end groups, which could be promising for numerous applications. Here, hyperbranched poly(amidoamine) (HPAMAM)/ Ka nanocomposites was prepared via an in-situ polymerization and an ex-situ method. The latter approach leads to a partly intercalated structure of the nanocomposites, while the former method results in an exfoliated morphology. Α combination of different techniques such as broadband dielectric spectroscopy (DBS), SXAS, FTIR, TEM, and DSC are employed to study the prepared samples. For the HPAMAM/ Ka-DCA nanocomposites (an ex-situ samples), the results indicated that the dc conductivity is increased by 4 orders of magnitude, with increasing concentration of the Ka-DCA. As an interesting result is that a significant decoupling between the characteristic time for conductivity relaxation and the segmental dynamics was observed, which depends on the concentration of the nanofiller. For the HPAMAM/ EDA nanocomposites (an in-situ polymerization), the dc conductivity is also increased with increasing the concentration of the Ka-EDA. The decoupling phenomenon and conductivity mechanism are discussed in detail. T2 - Spring Meeting of German Physical Socitety CY - Berlin, Germany DA - 12.03.2018 KW - Nanocomposites PY - 2018 AN - OPUS4-44521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Omara, Shereen A1 - Rehim, Mona A1 - Turky, Gamal A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Structure−property relationships of hyperbranched polyamine ester/Ka-DCA nanocomposites N2 - Hyperbranched polyamine ester (HPAE)/ kaolinite nanocomposites were papered via an ex situ (solution-based) method. The kaolinite has been modified by dodecylamine (DCA). SAXS measurements revealed that the Ka interlayer space increased from 0.71 to 3.6 nm-1. A partly exfoliated structure of the HPA/Ka-DCA nanocomposites was proved by SAXS and TEM. By a combination of BDS and SHS, the relaxation properties of the nanocomposites were investigated in dependence on frequency and temperature. The activation energies of γ-relaxation for the nanocomposites were lower than the values found for the pure HPAE. The segmental dynamics (α- relaxation) was found to be screened out by the conductivity contribution. While it is retrieved by SHS employing AC-chip calorimetry. A systematic change of the dynamic glass transition estimated by AC-chip calorimetry was observed, which is in agreement with a behavior expected for a confined sample. The confinement effect of the Ka-DCA nanofillers reduces the glass transition temperature Tg and enhances, meanwhile, the electrical conductivity of the polymer. By comparing the temperature dependence of the dynamic glass transition measured with SHS and that of the dc conductivity measured by dielectric spectroscopy, a decoupling in their temperature dependencies was found. With increasing concentration of the nanofiller, which results in a stronger glass-formation behavior, this decoupling becomes weaker. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Nanocomposites PY - 2018 AN - OPUS4-44522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -