TY - JOUR A1 - Bulakhe, R. N. A1 - Nguyen, V. Q. A1 - Lee, Y. R. A1 - Zhang, H. A1 - Zhang, S. A1 - Shim, J.-J. A1 - Tuma, Dirk T1 - Chemically grown 3D copper hydroxide electrodes with different morphologies for high-performance asymmetric supercapacitors JF - Journal of Industrial and Engineering Chemistry N2 - The present study investigated decoration of Cu(OH)₂ with different morphologies by copper precursors on 3D nickel foam. The Cu(OH)₂-A (nano flower)electrode showed an excellent capacitance of 1332 Fg⁻¹ at current density of 2 Ag⁻¹ compared to the Cu(OH)₂-C (nano ribbon, 1100 Fg⁻¹) and Cu(OH)₂-S (nano Long leaf, 1013 Fg⁻¹) electrodes. An asymmetric supercapacitor (ASC) was fabricated and showed a Maximum capacitance of 165 Fg⁻¹ at current density of 2 Ag⁻¹ with high energy density of 66.7 Wh kg⁻¹ and power density of 5698 W kg⁻¹ with excellent stability of 80 % after 10,000 cycles. KW - Copper hydroxide KW - Nickel foam KW - Supercapacitor PY - 2018 DO - https://doi.org/10.1016/j.jiec.2018.05.043 SN - 1226-086X SN - 1876-794X VL - 66 SP - 288 EP - 297 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-45930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lamiel, C. A1 - Lee, Y. R. A1 - Cho, M. H. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Enhanced electrochemical performance of nickel-cobalt-oxide@reduced graphene oxide//activated carbon asymmetric supercapacitors by the addition of a redox-active electrolyte JF - Journal of Colloid and Interface Science N2 - Supercapacitors are an emerging energy-storage system with a wide range of potential applications. In this study, highly porous nickel-cobalt-oxide@reduced graphene oxide (Ni-Co-O@RGO-s) nanosheets were synthesized as an active material for supercapacitors using a surfactant-assisted microwave irradiation technique. The RGO-modified nanocomposite showed a larger specific area, better conductivity, and lower resistivity than the unmodified nanocomposite because the RGO facilitated faster ion diffusion/transport for improved redox activity. The synergistic effect of Ni-Co-O@RGO-s resulted in a high capacitance of 1903 F/g (at 0.8 A/g) in a mixed KOH/redox active K3Fe(CN)6 electrolyte. The asymmetric Ni-Co-O@RGO-s//AC supercapacitor device yielded a high energy density and power density of 39 Wh/kg and 7500 W/kg, respectively. The porous structure and combination of redox couples from both the electrode and electrolyte provided a highly synergistic effect, which improved the performance of the supercapacitor device. KW - Ni-Co oxide KW - Reduced graphene oxide KW - Nanocomposite KW - Supercapacitor PY - 2017 DO - https://doi.org/10.1016/j.jcis.2017.08.003 SN - 0021-9797 SN - 1095-7103 VL - 507 SP - 300 EP - 309 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-41284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -