TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Marynowski, P. A1 - Wozny, K. T1 - Morphology and chemical composition of inconel 686 after high-temperature corrosion N2 - The work presents the microstructure, chemical composition and mechanical properties of Inconel 686 coatings after high - temperature corrosion in environment of aggressive gases and ashes. To produce the Ni - based coatings the QS Nd:YAG laser cladding process was carried out. As the substrate used 13CrMo4-5 boilers plate steel. Ni - base alloys characterize the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. Formed clad were characterized by high quality of metallurgical bonding with the substrate material and sufficiently low amount of the iron close to the clad layer surface. After corrosion experiment the oxide scale on the substrate and clad created. The scale on 13CrMo4-5 steel had 70 μm thickness while the scale of the clad had less than 10 μm. The microstructure, chemical composition of the obtained clad and scales were investigated by scanning electron microscope (SEM) and electron probe microanalyzer (EPMA) equipped with the EDS detectors. T2 - 27th International conference on metallurgy and materials CY - Brno, Czech Republic DA - 23.05.2018 KW - laser cladding KW - Inconel 686 KW - High - temperature corrosion KW - Aggressive environment KW - Oxide scale PY - 2018 SP - 1010 EP - 1016 AN - OPUS4-49660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Simkin, Roman A1 - Kranzmann, Axel T1 - Construction of an adiabatic calorimeter for investigation of high tempertarue salt - based phase change material N2 - The commercial usage of latent thermal energy storages primarily depends on the development of a suitable phase change material (PCM). For industrial high temperature applications above 400 °C multicomponent chloride eutectics are promising and therefore discussed seriously. The profound thermodynamic investigation of such eutectics requires a much greater amount of specimen material than conventional calorimeter can handle. Therefore, a special adiabatic calorimeter was developed and designed. With a specimen mass of > 100 g the typical thermodynamic measurements with a commercial calorimeter can be extended by cycle stability measurements, which are often decisive for practical application of PCM. Furthermore, by implementing corrosion specimens inside the calorimeter high temperature corrosion experiments according to ISO 21608 can be performed inside the calorimeter. Adiabatic measuring conditions can be provided by using two separate heating systems. Therefore, the outer “protective system” follows the temperature curve of the inner “measuring system” minimizing the temperature difference between the heating systems and simultaneously preventing heat losses from the measuring systems. T2 - 10th International Conference on Chemical, Biological and Environmental Engineering ICBEE 2018 CY - Berlin, Germany DA - 27.09.2018 KW - Adiabatic calorimeter KW - Thermal energy storage KW - Phase change material KW - Salt eutectics PY - 2018 DO - https://doi.org/10.7763/IPCBEE.2018.V103.6 VL - 103 SP - 21 EP - 28 AN - OPUS4-50363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Frank A1 - Köppe, Enrico A1 - Daum, Werner T1 - Tracking deformation history in split Hopkinson pressure bar testing N2 - The stress vs. strain curve of materials is affected the rate of imposed straining. Among the methods for dynamic testing the technique known as 'split Hopkinson pressure bar' (SHPB) has evolved into the most widely used one to exert high-speed straining. The theory behind it comprises simple equations to compute stress and strain. The reliability of the strain analysis can be assessed by digital image correlation (DIC). The present results indicate that the visually observed strain is smaller than predicted by theory. T2 - 32nd Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2015 KW - Split Hopkinson pressure bar (SHPB) KW - Digital image correlation (DIC) KW - Digitale Bildkorrelation (DIC) KW - Dynamic testing KW - Dynamische Tests KW - Stress-strain curve KW - Spannungs-Dehnungs-Kurve PY - 2015 SN - 978-80-554-1094-4 SP - 174 EP - 175 PB - University of Zilina, Slovakia CY - Zilina AN - OPUS4-35656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kronemann, Jens A1 - Hünger, K.-J. T1 - Aggregate reactivity and the efficiency of supplementary cementing materials N2 - The knowledge of dissolution processes of aggregates and supplementary cementing materials (SCMs) in alkaline solutions can help to describe the expansion of concretes caused by alkali-silica reaction (ASR) and the effects to avoid ASR by using SCMs in more details. Therefore, dissolution experiments in alkaline solutions under different pH values and different temperatures were performed using aggregates in the original grain size and SCMs in different ratios. The concentrations of soluble silica and additionally alumina were determined by ICP-OES. The investigations showed that up to now the “best” conditions to explain the damage behavior of concrete structures are a pH value of 13 (e.g. 0.1 M KOH solution) and a temperature of 80 °C. The evaluation bases on the parameter “excess silica” which is calculated from the dissolved silica and alumina of the aggregates and the SCMs. It was demonstrated that SCMs reduce and sometimes stop the dissolution of aggregates. The efficiency of the SCMs depends on their amount and chemical composition. T2 - 13th International conference on recent advances in concrete technology and sustainability issues CY - Ottawa, Canada DA - 14.07.2015 KW - alkali silica reaction KW - aggregate reactivity KW - dissolution of silica and alumina KW - dissolution rate PY - 2015 SN - 978-1-942727-23-1 SP - SP-303-26, 355 EP - 370 AN - OPUS4-35609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hünger, K.-J. A1 - Kronemann, Jens A1 - Hübert, C. A1 - Scholz, Y. T1 - On the mechanism of ASR inhibition by Si and Al containing SCMs N2 - The use of supplementary cementing materials (SCMs) added to concrete mixtures can avoid the alkali-silica reaction. Such materials have a wide range of composition and therefore the inhibition mechanisms can be very differently. The effectiveness of SCMs which provide silica and alumina into the alkaline solution cannot only be explained by reducing the OH--concentration of the pore solution. From dissolution experiments in potassium hydroxide solutions, an interaction was noted between the aggregate and five SCMs via the alkaline solution. Under specific conditions, no silica is released from the aggregate grains. Mineralogical investigations (XRD, SEM+EDX) of the grain surfaces confirm that quartz is the main source of silica. In the presence of alumina providing SCMs, the quartz dissolution is strongly reduced or even sometimes stopped. On surfaces of grains a very thin layer can be observed which is probably responsible for reduction or stopping of the silica dissolution and therefore for the inhibition of ASR. T2 - 13th International conference on recent advances in concrete technology and sustainability issues CY - Ottawa, Canada DA - 14.07.2015 KW - alkali-silica reaction KW - alkali reactivity KW - solubility KW - supplementary cementing materials KW - surface layer PY - 2015 SP - 437 EP - 451 AN - OPUS4-35612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Heming, Frank A1 - Jochems, Frank T1 - Impact of biocomponents in the fuel and heating oil on the compatibility of sealing materials N2 - The objective of this research was to determine the resistance of frequently used sealing materials such as FKM, FVMQ, VMQ, EPDM, CR, CSM, IIR, PA, NBR and PUR in fuels and heating oil with and without admixtures of biogenic sources such as E10, diesel fuel with 5 % biodiesel, non-aged and 2 year aged B10 (heating oil with 10 % biodiesel), pure diesel, standard heating oil and premium grade fuel Super plus at 20 °C, 40 °C and 70 °C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the fuels. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D (for PA) were determined before and after exposure of the test specimens in the biofuels for 42 days. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore a threshold of 15 % was determined for the evaluation of the compatibility. In summary, it can be therefore stated that the chemical resistance of the fluoropolymers FKM and FVMQ in fuels and biofuels is the best one. T2 - CORROSION 2016 CY - Vancouver, Kanada DA - 06.03.2016 KW - sealing materials KW - compatibility KW - biofuels PY - 2016 SP - Paper No. 7307, 1 EP - 12 PB - NACE INTERNATIONAL, Publications Division CY - Houston, Texas 77084 (USA) AN - OPUS4-35622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fasano, A. A1 - Woyessa, G. A1 - Stajanca, Pavol A1 - Markos, C. A1 - Stefani, A. A1 - Nielsen, K. A1 - Rasmussen, H. K. A1 - Krebber, Katerina A1 - Bang, O. ED - Kalli, K. ED - Mendez, A. T1 - Creation of a microstructured polymer optical fiber with UV Bragg grating inscription for the detection of extensions at temperatures up to 125°C N2 - We describe the fabrication of a polycarbonate (PC) micro-structured polymer optical fiber (mPOF) and the writing of fiber Bragg gratings (FBGs) in it to enable strain and temperature measurements. We demonstrate the photosensitivity of a dopant-free PC fiber by grating inscription using a UV laser. We further show that PC Bragg gratings can be extended up to at least 3% without affecting the initial functionality of the micro-structured fiber. The response of PC FBGs to temperature up to 125°C is also investigated. Polycarbonate has good mechanical properties and its high temperatureresistance might extend the range of application of polymeric FBGs. T2 - Photonics Europe 2016, Micro-Structured and Specialty Optical Fibres IV CY - Brussels, Belgium DA - 03.04.2016 KW - fiber Bragg gratings KW - Polycarbonate KW - polymers KW - micro-structured polymer optical fibers KW - UV laser inscription KW - optical fiber sensors PY - 2016 DO - https://doi.org/10.1117/12.2227843 VL - 9886 SP - 988619-1 EP - 988619-6 PB - SPIE AN - OPUS4-35928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oesch, Tyler T1 - In-situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes N2 - The use of high-performance concretes holds great promise for many structural applications. This paper investigates the performance of these materials when used in combination with traditional reinforcing bars. An improved understanding of failure during reinforcing bar pull-out from high-performance concretes is needed in order to better predict the embedment length required to develop full reinforcing bar pull-out strength and the required thickness of reinforcing bar cover for adequate corrosion protection. The cracking structures surrounding the reinforcing bars were analyzed using x-ray computed tomography (CT) in order to determine the stress states causing failure. This was accomplished by conducting in-situ reinforcing bar pull-out experiments during CT scanning. A conventional concrete, a high-strength concrete, and a high-strength fiber reinforced concrete were all tested during the experiments. The results of these experiments showed that the levels of brittleness of the different concrete materials had a major impact on the failure mechanisms that they experienced during reinforcing bar pull-out. It was also clear that the specimen geometry and the casting method had a major impact on fiber orientation. The inclusion of fibers within concrete was also found to significantly improve strength and corrosion protection during reinforcing bar pull-out. T2 - 6th Conference on industrial computed tomography (iCT) CY - Wels, Austria DA - 09.02.2016 KW - Fiber KW - Reinforcing bar KW - Computed tomography KW - In-situ KW - High-performance concrete PY - 2016 UR - http://www.ndt.net/article/ctc2016/papers/ICT2016_paper_id83.pdf SN - 1435-4934 VL - 21 IS - 2 SP - ID 18788, 1 EP - 8 AN - OPUS4-35436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marotzke, Christian A1 - Feldmann, Titus ED - Thomson, Ole T1 - Characterisation of failure processes of composite plies under transverse loading N2 - For the design of laminates the knowledge of the failure behaviour of plies under multiaxial stresses is a necessary precondition. The strength of plies under multiaxial stresses commonly is determined by standard off-axis tests using fixed clamps. By varying the off axis angle the ratio of shear to normal stresses can be prescribed. However, by preventing the rotation a complex stress field develops which strongly varies with the off axis angle as well. While these effects are not crucial when determining the elastic material parameters since the stress state in the center of the specimen is not far from the ideal uniaxial stress state they have a great influence on the failure behaviour. T2 - ICCM20 CY - Copenhagen, Danmark DA - 19. 07. 2015 KW - debonding KW - composites KW - failure process KW - fracture mechanics KW - energy release rate PY - 2015 UR - www.iccm-central.org/Proceedings/ICCM20proceedings/ VL - 2015 SP - Paper No. 3314-4 page 01 EP - Paper No. 3314-4 page 09 AN - OPUS4-36414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüth, Peter A1 - Uhlig, S. A1 - Frost, K. A1 - Malow, Marcus A1 - Michael-Schulz, Heike A1 - Schmidt, Martin A1 - Zakel, S. T1 - CEQAT-DGHS interlaboratory tests for chemical safety: Validation of laboratory test methods by determining the measurement uncertainty and probability of incorrect classification including so-called “Shark profiles” N2 - Laboratory test results are of vital importance for correctly classifying and labelling chemicals as “hazardous” as defined in the UN Globally Harmonized System (GHS) / EC CLP Regulation or as “dangerous goods” as defined in the UN Recommendations on the Transport of Dangerous Goods. Interlaboratory tests play a decisive role in assessing the reliability of laboratory test results. Interlaboratory tests performed over the last 10 years have examined different laboratory test methods. After analysing the results of these interlaboratory tests, the following conclusions can be drawn: 1. There is a need for improvement and validation for all laboratory test methods examined. 2. To avoid any discrepancy concerning the classification and labelling of chemicals, the use of validated laboratory test methods should be state of the art, with the results accompanied by the measurement uncertainty and (if applicable) the probability of incorrect classification. This paper addresses the probability of correct/incorrect classification (for example, as dangerous goods) on the basis of the measurement deviation obtained from interlaboratory tests performed by the Centre for quality assurance for testing of dangerous goods and hazardous substances (CEQAT-DGHS) to validate laboratory test methods. This paper outlines typical results (e.g. so-called “Shark profiles” – the probability of incorrect classification as a function of the true value estimated from interlaboratory test data) as well as general conclusions and steps to be taken to guarantee that laboratory test results are fit for purpose and of high quality. T2 - 13th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE 2020) CY - Braunschweig, Germany DA - 27.07.2020 KW - Dangerous goods KW - Hazardous substances KW - Interlaboratory test KW - Test method KW - Validation KW - Quality assurance KW - Measurement uncertainty KW - Incorrect classification KW - Shark profile PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515376 UR - https://oar.ptb.de/files/download/5f3e662f4c93901010006dbf DO - https://doi.org/10.7795/810.20200724 VL - 2020 SP - 50 EP - 61 PB - Open Access Repository der Physikalisch-Technischen Bundesanstalt (PTB-OAR) CY - Braunschweig AN - OPUS4-51537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -