TY - CONF A1 - Neumann, L. A1 - Jakobs, F. A1 - Spelthann, S. A1 - Zaremba, D. A1 - Radunz, Sebastian A1 - Resch-Genger, Ute A1 - Evert, R. A1 - Kielhorn, J. A1 - Kowalsky, W. A1 - Johannes, H.-H. T1 - Integration of β-NaYF4 Upconversion Nanoparticles into Polymers for Polymer Optical Fiber Applications N2 - Producing active polymer optical fibers (POFs) is a key step towards new applications such as fluorescent fiber solar concentrators (FFSCs), sensors, contactless coupling devices, or fiber integrated light sources and lasers. Therefore, integration of fluorescent nanoparticles into the polymer matrix is necessary and becomes accessible via in situ polymerization. For optical applications, the polymer has to fulfill various requirements such as chemical and physical stability, optical transparency in the application-relevant spectral region as well as a good synthetic accessibility. A common material for these is poly(methyl methacrylate) (PMMA). The β-phase NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNP) were synthesized from the rare earth salts via thermal decomposition method in high-boiling point solvent 1-octadecene and capping agent oleic acid. Current results show hazy samples of the polymer with integrated nanoparticles made from monomer solution of methyl methacrylate. However, further optical tuning such as increasing the transparency of the bulk samples by changing the monomer solution to non-polar n-butyl methacrylate (nButMA) or cyclohexyl methacrylate (CHMA) or further optimization of the UCNP shell could lead to more suitable polymer bulk samples. T2 - PCNSPA 2018 - Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications CY - St. Petersburg, Russia DA - 04.06.2018 KW - Copolymer KW - Active fibers KW - Rare earth nanoparticles KW - Upconversion PY - 2018 SP - 1 EP - 9 AN - OPUS4-45883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, L. A1 - Jakobs, F. A1 - Spelthann, S. A1 - Zaremba, D. A1 - Radunz, Sebastian A1 - Resch-Genger, Ute A1 - Evert, R. A1 - Kowalsky, W. A1 - Johannes, H.-H. T1 - Upconverting POF by Incubation of β-NaYF4:Yb3+, Er3+ Nanoparticles via in situ Polymerization for Production of active Polymer Optical Fibers N2 - In the past, integration of fluorescent dyes into polymers for active polymer optical fibers (POFs) is well studied, however, photobleaching of organic chromophores is still a problem for several optical applications. Inorganic luminescent nanoparticles like lanthanide-based systems can present an alternative due to their high chemical stability. Furthermore they do not show photobleaching and photoblinking. Certainly, integration of nanoparticles into a polymer matrix is challenging because of their high affinity to agglomeration which leads to scattering of the polymer samples. T2 - 27th International Conference on Plastic Optical Fibers CY - Seattle, Washington, USA DA - 04.09.2018 KW - Copolymer KW - Active fibers KW - Rare earth nanoparticles KW - Upconversion PY - 2018 SP - 1 EP - 5 CY - Seattle, Washington, USA AN - OPUS4-45882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -