TY - CONF A1 - Fontana, Patrick A1 - Miccoli, Lorenzo A1 - Kocadag, R. A1 - Silva, N. A1 - Qvaesching, D. A1 - Kreft, O. A1 - Cederqvist, Ch. ED - Fehling, E. ED - Middendorf, B. ED - Thiemicke, J. T1 - Composite UHPC facade elements with functional surfaces N2 - This paper presents an innovative way to combine an external ultra-high performance concrete (UHPC) supporting layer with an insulation layer of autoclaved aerated concrete (AAC) or cellular lightweight concrete (CLC) to create light-weight façade elements, which are improved in functionality and in energy efficiency. The durability of the façade elements is improved by developing UHPC with self-cleaning properties. One approach is based on the photocatalytic activation of the external UHPC shell by incorporation of TiO2 particles. The second approach consists of the modification of the UHPC surface by micro structuring in combination with the application of water-repellent agents to create durable super hydrophobicity. The current results obtained from laboratory testing are promising and demonstrate the feasibility of the approaches. T2 - HiPerMat 2016 4th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials CY - Kassel, Germany DA - 09.03.2016 KW - Composite UHPC elements KW - photocatalysis KW - super hydrophobicity KW - self-cleaning KW - autoclaved aerated concrete KW - cellular lightweight concrete PY - 2016 SN - 978-3-7376-0094-1 VL - 27 SP - 159 EP - 160 PB - kassel university press GmbH CY - Kassel AN - OPUS4-36566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fontana, Patrick A1 - Qvaeschning, D. A1 - Hoppe, Johannes ED - de Schutter, G. ED - de Belie, N. ED - Janssens, A. ED - van den Bossche, N. T1 - Durability of UHPC for facade elements with self-cleaning surfaces N2 - This paper presents the development of ultra-high performance concrete (UHPC) for façade elements with self-cleaning properties. For creating self-cleaning surfaces two different approaches are proposed. One approach is based on the photocatalytic activation of the external UHPC shell by incorporation of TiO2 particles. The second approach consists of the modification of the UHPC surface by micro structuring in combination with the application of hydrophobic agents to create durable super hydrophobicity. In the framework of the H-HOUSE Project funded by the European Commission the experimental investigations were performed with UHPC based on Dyckerhoff Nanodur® technology. The special properties of this material enable the precise reproduction of any micro structure without flaws. The current results obtained from laboratory and outdoor weathering tests are promising and demonstrate the feasibility of the approaches. T2 - XIV DBMC - 14th International Conference on Durability of Building Materials and Components CY - Ghent, Belgium DA - 29.05.2017 KW - Building materials KW - Ultra-high performance concrete KW - Water repellence KW - Photocatalysis KW - Waethering KW - Durability PY - 2017 SN - 978-2-35158-159-9 VL - PRO 107 SP - 209 EP - 210 PB - RILEM Publications S.A.R.L. AN - OPUS4-40997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klinge, A. A1 - Roswag, E. A1 - Fontana, Patrick A1 - Richter, Matthias A1 - Hoppe, Johannes A1 - Sjöström, C. T1 - Hygroscopic natural materials versus mechanical ventilation N2 - Multi residential buildings, developed as highly energy-efficient and airtight are nowadays often fitted with mechanical Ventilation Systems as a way to overcome shortcomings and even defects tinked to indoor climate. The presented study investigates the potential of low-emitting. natural building materials with hygroscopic properties to contribute to a healthy and comfortable indoor environment, while reducing the need for mechanical Ventilation. A selection of natural building materials suitable for application as internal partition walls has been investigated with regards to their water vapour adsorption capacity. Special emphasis was placed on the investigation of modified earth plasters as well as wood-based materials, used as wall lining to provide increased adsorption capacities. In addition, tests on materials emissions (formaldehyde, VOCs, SVOCs and radon) as well as adsorption tests of airborne pollutants have been conducted in specially-designed fest chambers. All tests were performed at either the material or the component tevel. Overall results to date suggest that natural materials contribute to an improved indoor environment quality through an increased moisture-buffering capacity, low emissions and the potential to adsorb airborne pollutants, therefore reducing the need for mechanical Ventilation. T2 - Terra Lyon 2016 - XIIth World Congress on Earthen Architecture CY - Lyon, France DA - 11.07.2016 KW - Hygroscopic earth and wooden materials KW - Low emissions PY - 2016 SN - 979-10-96446-11-7 SP - 218 EP - 221 PB - Editions CRAterre CY - Villefontaine AN - OPUS4-44856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klinge, A. A1 - Roswag-Klinge, E. A1 - Fontana, Patrick A1 - Hoppe, Johannes A1 - Richter, Matthias A1 - Sjöström, C. T1 - Reduktion von Lüftungstechnik durch den Einsatz klimasteuernder Naturbaustoffe - Ergebnisse aus dem EU Forschungsvorhaben H-House und der Baupraxis T1 - Reducing the need for mechanical ventilation through the use of climate-responsive natural building materials - Results from the EU research project H-House and building practice N2 - Die größten Ressourcenverbraucher unserer Zeit sind die Gebäude oder Behausungen des Menschen sowohl in der Phase der Errichtung als auch im Betrieb. Der Gebäudesektor und damit auch die Architektur verbrauchen in Deutschland ca. 50 % der fossilen Energieressourcen und verursachen ca. 60 % des gesamten Müllaufkommens mit dem zugehörigen Bedarf an Ressourcen in der Errichtung. Öl, Stahl und Beton haben uns Glauben gemacht die natürlichen Begebenheiten bei der Gestaltung von Gebäuden wenig beachten zu müssen. Immer neue Techniken zum Betrieb und zur Klimatisierung von Gebäuden waren die Zukunft. Der Klimawandel und die Ressourcenknappheit sind Aufforderungen zur Veränderung. Das Voranschreiten der Reform des Bauwesens hat somit zentrale Bedeutung zur Erreichung der Nachhaltigkeitsziele und um unsere Gesellschaft zukunftsfähig zu machen. Klimaangepasste Architekturkonzepte und die Verwendung von klimaaktiven Naturbaustoffen werden einen wesentlichen Beitrag zum Ressourcenschutz erbringen. N2 - More resources are consumed for the construction and use of buildings and dwellings than in any other industry. The building sector, and by extension architecture, is responsible for consuming around 50 % of fossil fuels in Germany and produces around 60 % of the entire volume of waste together with the resources used for the construction of buildings. Oil, steel and concrete has led us to believe that we can overcome the laws of nature in the design of our buildings, and for years we have devised ever new technologies for controlling building climate and operating our buildings. But the onset of climate change and the continuing depletion of resources signals a need for Change. To achieve our declared sustainability goals, and to better equip society for the future, it is vital that we effect reforms in the building sector. Climate-adaptive architectural concepts and the use of climateresponsive natural building materials can potentially make a major contribution to conserving resources. T2 - Lehm 2016 - 7. Internationale Fachtagung für Lehmbau - 7th International Conference on Building with Earth CY - Weimar, Germany DA - 12.11.2016 KW - Baustoffe KW - Hygroskopische Lehm- und Holzbaustoffe KW - Natürliche Belüftung KW - Luftdichte Gebäudehülle KW - Schadstoffemission von Baustoffen KW - Building materials KW - Hygroscopic earthen and wooden building materials KW - Natural ventilation KW - Air-tight building envelope KW - Emission of pollutants from building materials PY - 2016 N1 - Volltext (PDF) in deutsch und englisch - Full text (PDF) in German and English SP - 1 EP - 15 PB - Eigenverlag Dachverband Lehm e. V. CY - Weimar AN - OPUS4-38997 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Kreft, O. A1 - Pietruszka, B. A1 - Lukaszewska, A. A1 - Klinge, A. ED - De Schutter, G. ED - De Belie, N. ED - Janssens, A. ED - Van Den Bossche, N. T1 - Design of UHPC-AAC light-weight composite facade elements for refurbishment N2 - The aim of this study was to develop a lightweight composite façade element for refurbishment of existing façades. It was crucial to minimize the thermal bridges and to undercut the thermal requirement of the system existing façade new element. The awareness of the environmental impact of the building sector is increasing. In this context, ultra-high performance concrete (UHPC) materials are shown to be promising alternatives with advantages such as lower embodied energy and reduced environmental impact. Predictions suggest that UHPC composite elements for building envelopes could have other benefits such as an increased service life, optimized use of building area due to thinner elements and minimized maintenance due to the absence of reinforcement or use of non-corrosive reinforcing materials such as carbon fibers. In this framework, composite elements have been developed combining an autoclaved aerated concrete insulation layer with an external UHPC supporting layer. The results show that the lightweight composite element has a good performance in term of thermal transmittance and minimization of thermal bridges. T2 - XIV DBMC - 14th International Conference on Durability of Building Materials and Components CY - Gent, Belgium DA - 29.05.2017 KW - Composite panels KW - Ultra-high performance concrete KW - Autoclaved aerated concrete KW - Hygrothermal behaviour KW - Production technology PY - 2017 SN - 978-2-35158-159-9 VL - PRO 107 SP - 1 EP - 10 PB - RILEM Publications S.A.R.L. AN - OPUS4-40498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Müller, U. ED - Van Balen, K. ED - Verstrynge, E. T1 - In-plane shear behaviour of earthen materials panels strengthened with polyester fabric strips N2 - An experimental investigation was carried out to study the in-plane shear behaviour of earthen material Panels strengthened with polyester fabric strips. Strengthened panels were developed to exploit the strength potential of earthen materials and to solve its lack of tensile strength, significantly improving not only strength but also ductility. Three earthen materials were considered: cob, earth block masonry (EBM) and rammed earth (RE). As first approach the strengthening configuration, based on different adhesive materials, was tested only for cob panels. As part of the study the results of a big testing campaign of unstrengthened Panels were considered. Seven strengthened panels were tested in diagonal compression/shear.A unique reinforcement orientation was used. The results of these tests are presented in this paper, and include the load-displacement behaviours, crack patterns, failure modes. The results showed that the reinforcement was the most effective in EBM panels, with increase in strength and ductility observed. In RE and cob panels the reinforcement did not likely contribute significantly to the shear resistance, due to a lack of embedment length of the strips. Instead, in EBM it was likely that the vertical reinforcement acted in tension to restrain shear induced dilation and to restrain sliding. T2 - 10th International Conference on Structural Analysis of Historical Constructions (SAHC 2016) CY - Leuven, Belgium DA - 13.09.2016 KW - Earthen materials KW - Strengthening KW - Diagonal compression test KW - Shear strength PY - 2016 SN - 978-1-138-02951-4 SP - 1099 EP - 1105 PB - Taylor & Francis Group CY - London AN - OPUS4-38993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Silva, N. A1 - Kocadag, R. A1 - Cederqvist, Ch. A1 - Krefft, O. A1 - Qvaesching, D. T1 - UHPC-AAC/CLC composite panels with self-cleaning properties. Materials and production technology N2 - The aim of this study is to show the development of a façade composite panel combining either an autoclaved aerated concrete or a cellular lightweight concrete insulation layer with a box-type external ultra-high performance concrete (UHPC) supporting layer. The paper presents the materials characteristics of the different components and the production technology of the panel. The efficiency of surface modifications of the materials forming the external shell of the panel is reported. The activation of self-cleaning properties is described. The test results showed that the most efficient way to use the water-repellent agent is its application on the substrate before the concrete cast. Concerning the production technology, the preliminary studies showed more advantages of a twostep manufacturing procedure of the UHPC boxes than a one-step procedure. T2 - Smart Facades Materials Conference CY - Wels, Austria DA - 24.02.2016 KW - facade composite panels KW - ultra-high performance concrete (UHPC) KW - autoclaved aerated concrete (AAC) KW - cellular lightweight concrete (CLC) KW - self-cleaning properties PY - 2016 SP - 1 EP - 14 PB - OÖ Energiesparverband CY - Wels, Austria AN - OPUS4-37185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Ziegert, C. A1 - Müller, P. ED - Modena, C. ED - da Porto, F. ED - Valluzzi, M. R. T1 - Calibration of partial safety factors for earth block masonry under compression loading N2 - The goal of the present study is to assess the feasibility to develop a first reliable database of materials parameters for Earth Block Masonry (EBM). The database is crucial when defining the materials safety factors. In the first part an experimental campaign of compressive tests were carried out on two types of earth block and two types of earth mortar. The results showed that the mean variation of the compressive strength was remarkably less than expected. This low variation is related to a production with high quality standards of the materials employed. In the second part a partial safety factor for EBM under uniaxial compression was determined through the reliability method. The results proved the reliability of a common calculation method for EBM based on partial safety factors following the current standards. T2 - IB2MAC 2016 - 16th International Brick and Block Masonry Conference CY - Padua, Italy DA - 26.06.2016 KW - earth block masonry KW - partial safety factors KW - uniaxial compression test PY - 2016 SN - 978-1-138-02999-6 SP - 857 EP - 864 PB - CRC Press Taylor & Francis Group CY - London, UK AN - OPUS4-37145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Müller, U. A1 - Fontana, Patrick ED - Mazzolani, F. M. ED - Lamas, A. ED - Calado, L. ED - Proenca, J. M. ED - Faggiano, B. T1 - Strengthening of rammed earth structural elements. Mechanical behaviour under shear and cyclic loading N2 - An experimental investigation was carried out to study the in-plane shear behaviour of rammed earth structural elements strengthened with polyester fabric strips. The original idea for the retrofitting with polyester fabric strips was to introduce a vertical element for walls in order to take up horizontal loads resulting in a shear response of the building element. It has to be considered that vertical slits into the walls for fixing the strips are points of weakness and have to be mitigated by the adhesive. In this case a base coat mortar was employed. Strengthened elements were tested to exploit the strength potential of earthen materials and to solve its lack of tensile strength, significantly improving not only strength but also ductility. As part of the study results of a testing campaign of unstrengthened structural elements were considered. Strengthened elements were tested in diagonal compression/shear and cyclic shear-compression. A unique reinforcement orientation was used. The results of these tests are presented in this paper and include the load-displacement behaviours, crack patterns, failure modes. The results showed that the reinforcement was the most effective under cyclic shear-compression tests, with increase in load and displacement capacity observed. Under diagonal compression the reinforcement did not likely contribute significantly to the shear resistance, due to a lack of embedment length of the strips. T2 - 3rd International Conference on Protection of Historical Constructions (PROHITECH 2017) CY - Lisbon, Portugal DA - 12.07.2017 KW - Rammed earth KW - Diagonal compression tests KW - Shear-compression tests KW - Strengthening KW - Polyester fabric strips PY - 2017 SN - 978-989-8481-58-0 SP - 157 EP - 158 PB - IST-Press AN - OPUS4-41263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Oliveira, D. V. A1 - Silva, R. A. A1 - Drougkas, A. A1 - Fontana, Patrick T1 - Numerical modelling of rammed earth under different in-plane load conditions N2 - The paper presents a comparison between two different numerical modelling approaches aimed to simulate the in-plain behaviour of rammed earth walls, namely under axial, diagonal and cyclic shearcompression loading. In the first part of the study the mechanical characterisation of wallets tested under uniaxial compression and diagonal compression and walls tested under in-plane cyclic shear-compression loading is presented. The results were used to implement and validate the finite element simulations. The numerical modelling of the rammed earth samples tested is then discussed in the second part. A non-linear constitutive law based on the total strain rotating crack model (TSRCM) was employed as implemented in the DIANA® software. The aim of the numerical analyses presented here is to simulate the behaviour of rammed earth under different inplane loading conditions. For the wallets, tests under static loading both macro- and micro-modelling approaches were considered for the simulation of the experimental tests. For the walls subjected to cyclic loading only the micro-modelling approach was applied for the simulation of the experimental tests. The respective FEM model was calibrated with the experimental results. The rammed earth layers were represented by continuum elements, the contact surfaces between layers by interface elements. This approach allowed assessing the influence of the apparent weakness of the interfaces between layers on the shear behaviour of rammed earth. The goal of the numerical simulation of the cyclic tests was to establish the adequacy of common analytical methods (e. g. used for masonry) applied to the analysis of rammed earth. Rammed earth exhibits brittle characteristics similar to masonry materials and is used in geometrical typologies, such as walls, common in masonry construction. T2 - Lehm 2016 - 7th International Conference on Building with Earth CY - Weimar, Germany DA - 12.11.2016 KW - Building materials KW - FEM analysis KW - Rammed earth KW - Compression and shear testing KW - Cyclinc loading KW - Failure mode KW - Crack pattern PY - 2016 SP - 1 EP - 9 PB - Eigenverlag Dachverband Lehm e. V. CY - Weimar AN - OPUS4-38820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -