TY - JOUR A1 - Zirnstein, Benjamin A1 - Tabaka, Weronika A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Graphene / hydrogenated acrylonitrile-butadiene rubber nanocomposites: Dispersion, curing, mechanical reinforcement, multifunctional filler N2 - Elastomers are usually mechanically reinforced with high loadings of carbon black (CB) to achieve the properties demanded; high amounts of mineral flame retardants are used to fulfill fire safety requirements. In this study, multilayer graphene (MLG), a nanoparticle made of only 10 graphene sheets, is applied in low loadings, 3 parts per hundred rubber (phr) to reduce the total amount of filler or boost performance in hydrogenated acrylonitrilebutadiene rubber (HNBR). In the HNBR/MLG nanocomposites, 3 phr MLG replaced 15 phr CB, 3 phr aluminum trihydroxide (ATH), or 15 phr CB + 3 phr ATH. The nanocomposites were prepared via master batch by ultrasonically assisted solution mixing and subsequent conventional two-roll milling. A comprehensive study is presented, illustrating the impact of MLG on curing and mechanical properties; e.g. replacing 2.5 phr ATH with 3 phr MLG increased the Young's modulus by over 60% and hardness by 10%, while improving flame retardancy, and reducing the total heat evolved by 10%. MLG is a multifunctional filler, as demonstrated by various enhancements in terms of the mechanical and flame retardancy properties of the rubber composites. KW - Nanocomposite KW - Rubber KW - Graphene PY - 2018 U6 - https://doi.org/10.1016/j.polymertesting.2018.01.035 SN - 0142-9418 SN - 1873-2348 VL - 66 SP - 268 EP - 279 PB - Elsevier Ltd. AN - OPUS4-44457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musil, B. A1 - Böhning, Martin A1 - Johlitz, M. A1 - Lion, A. T1 - On the inhomogenous chemo-mechanical ageing behaviour of nitrile rubber: experimental investigations, modelling and parameter identification N2 - Elastomers are used in almost all areas of industrial applications, such as tires, engine mounts, bridge bearings, seals or coatings. During their use in operation, they are exposed to different environmental influences. These include, in particular, climatic factors such as air oxygen, high temperatures, light (UV radiation) and the influence of media (e.g. oils, fuels). A very important result of these factors is the chemical ageing of elastomers. In this case, the elastomer degenerates and changes its chemical structure in the aged regions, which leads to an irreversible change in the material properties in connection with the reduction in its usability. In this paper, chemical ageing of nitrile butadiene rubber (NBR) is investigated. Especially in case of thermo-oxidative ageing at elevated operating temperatures, the ageing processes run inhomogeneously. These effects are known as diffusion-limited oxidation (DLO) and are associated with the diffusion–reaction behaviour of atmospheric oxygen with the elastomer network. For these reasons, NBR samples are artificially aged in air and subjected to different experimental methods, which are presented and discussed. Additional results from inhomogeneous mechanical tests and permeation tests indicate the causes of the DLO-effect, show the influence of chemical ageing and are subsequently used for parameter identification in relation to the diffusion–reaction equation. A continuum-mechanical modelling approach is also presented here, which describes the finite hyperelasticity, diffusion–reaction processes as well as chemical degradation and reformation of the elastomer network. This multifield problem leads to a system of partial and ordinary differential equations and constitutive equations and is solved within the finite element method. KW - Rubber KW - Ageing KW - Gas permeability KW - DLO KW - NBR PY - 2019 U6 - https://doi.org/10.1007/s00161-019-00791-1 SN - 0935-1175 SN - 1432-0959 VL - 32 IS - 1 SP - 127 EP - 146 PB - Springer CY - Heidelberg AN - OPUS4-48560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - The impact of polyaniline in phosphorus flame retardant ethylene-propylene-diene-rubber (EPDM) N2 - Usually elastomers are loaded with high amounts of flame retardants to fulfill fire safety requirements. In this study the potential char precursor polyaniline (PANI) and the established fire retardant pentaerythritol (PER) were implemented in ethylene-propylene-diene monomer rubber (EPDM). PANI and PER were used in low loadings (7 phr) and combined with two phosphorous flame retardants, Ammonium polyphosphate (APP) and a piperazine-pyrophosphate/phosphoric acid compound (FP), to boost their performance. A comprehensive study is presented, explaining the impact of PANI on curing and mechanical properties, including compensation for the plasticizer-like effect of APP in EPDM, and improved flame retardancy. In the cone calorimeter test, the combination of EPDM/FP/PANI reduced the effective heat of combustion by 20%. All nine EPDM rubber compounds were investigated with the LOI and UL 94 tests, cone calorimeter, FMVSS 302 and glow wire testing to quantify fire performance. The PANI containing EPDM rubbers, EPDM/APP/PANI and EPDM/FP/PANI outperformed the corresponding PER containing, EPDM/APP/PER and EPDM/FP/PER rubbers in various tests. Moreover, the study investigated the impact of PANI and PER on the mode of action of the phosphorus species and showed that the addition of PANI increased the amount of phosphorus in the condensed phase. To receive a broader understanding of the flame retardant mode of action of PANI in combination with APP and FP, calculations were carried out to estimate the impact of PANI on the protective layer effect. KW - EPDM KW - Rubber KW - Flame retardant KW - Polyaniline KW - Pentaerythritol PY - 2019 U6 - https://doi.org/10.1016/j.tca.2019.01.019 SN - 0040-6031 VL - 673 SP - 92 EP - 104 PB - Elsevier B.V. AN - OPUS4-47503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Combination of phosphorous flame retardants and aluminum trihydrate in multicomponent EPDM composites N2 - Ethylene propylene diene monomer (EPDM) Rubbers with the flame retardants tris(2-ethylhexyl)phosphate, ammonium polyphosphate, polyaniline, and aluminum trihydroxide were prepared and analyzed in this study. The homogenous dispersion of the fillers in the rubber matrix was confirmed by scanning electron microscope. To investigate the interplay of the different flame retardants, the flame retardants were varied systematically. The comprehensive study sought combinations of flame retardants that allow high loadings of flame retardants without deterioration of the physical and mechanical properties of the EPDM rubber. The eight EPDM rubbers were investigated via thermogravimetric analysis and pyrolysis gas chromatography coupled with a mass spectrometer (Py GC/MS) to investigate the potential synergistic effects. In the Py-GC/MS experiments, 27 pyrolysis products were identified. Furthermore, UL 94, limiting oxygen index, FMVSS 302, glow wire tests, and cone calorimeter tests were carried out. In the cone calorimeter test the EPDM rubbers R-1AP and R-1/2P achieved an increase in residue at flameout of 76% and a reduction in total heat evolved of about 35%. Furthermore, the compounds R-1AP and R-1/2P achieved a reduction in MARHE to about 150 kW m−1, a reduction of over 50% compared to the unprotected rubber R. KW - EPDM KW - Rubber KW - Aluminum hydroxide (ATH) KW - Phosphorous flame retardant PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-502859 SN - 1548-2634 VL - 60 IS - 2 SP - 267 EP - 280 PB - Wiley AN - OPUS4-50285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Abdou-Rahaman Fadul, Naïssa A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites N2 - To curtail flammability risks and improve material properties, flame retardants (FRs) and fillers are mixed into rubbers. High loadings of aluminum trihydroxide (ATH) and carbon black (CB) are the most used FRs and reinforcing additive, respectively, in rubbers. To reduce loading without losing mechanical properties, partial substitution of ATH as well as CB by low amounts of multilayer graphene (MLG) nanoparticles is investigated. The high aspect ratio MLG is made of ten graphene sheets. In polybutadiene/chloroprene (BR/CR) nanocomposites 3 phr MLG replaced 15 phr CB and/or 3 phr ATH. Material and mechanical properties as well as fire behavior of the nanocomposites are compared to BR/CR with 20 phr CB both with and without 50 phr ATH. MLG appears as a promising nanofiller to improve the functional properties: replacement of CB improved rheological, curing, and mechanical properties; substitution of ATH improved nanocomposite properties without affecting flame retardancy. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Carbon black KW - Polybutadiene/chloroprene KW - Graphene PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-523468 SN - 1618-7229 VL - 21 IS - 1 SP - 244 EP - 262 PB - De Gruyter AN - OPUS4-52346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Battig, Alexander A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Huth, Christian A1 - Böhning, Martin A1 - Schartel, Bernhard T1 - Multifunctional Property Improvements by Combining Graphene and Conventional Fillers in Chlorosulfonated Polyethylene Rubber Composites N2 - The incorporation of nanoparticles like multilayer graphene (MLG) into elastomeric composites boosts their technical performance, such as their mechanical behavior and electrical conductivity. Common filler types (carbon black (CB) and aluminum trihydroxide (ATH)) generally fulfill single, specific purposes and are often used in high loadings. CB typically reinforces rubber mechanically, while ATH increases flame retardancy. Small amounts of MLG reduce these high filler contents and maintain the multifunctional characteristics of rubber composites. In chlorosulfonated polyethylene (CSM) + ATH, an intrinsically flame-retardant rubber was designed to achieve the highest standards such as maximum average of heat emission (MARHE) <90 kW m−2, 3 phrMLG was substituted for 15 phr CB and/or 3 phr ATH via an industrially applicable processing approach. Replacing either CB or ATH resulted in a property profile that was multifunctionally improved in terms of features such as mechanical performance, reduced sorption, and flame retardance. MLG nanocomposites are reported to show promise as an industrially utilizable route to obtain multifunctional high-performance rubbers. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Flame retardancy KW - Synergy KW - Nanoparticles KW - Elastomers PY - 2022 U6 - https://doi.org/10.1021/acsapm.1c01469 SN - 2637-6105 VL - 4 IS - 2 SP - 1021 EP - 1034 PB - ACS Publ. CY - Washington, DC AN - OPUS4-54330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - Networking Skills: The Effect of Graphene on the Crosslinking of Natural Rubber Nanocomposites with Sulfur and Peroxide Systems N2 - Tailored crosslinking in elastomers is crucial for their technical applications. The incorporation of nanoparticles with high surface-to-volume ratios not only leads to the formation of physical networks and influences the ultimate performance of nanocomposites, but it also affects the chemical crosslinking reactions. The influence of few-layer graphene (FLG) on the crosslinking behavior of natural rubber is investigated. Four different curing systems, two sulfur-based with different accelerator-to-sulfur ratios, and two peroxide-based with different peroxide concentrations, are combined with different FLG contents. Using differential scanning calorimetry (DSC), vulcametry (MDR) and swelling measurements, the results show an accelerating effect of FLG on the kinetics of the sulfur-based curing systems, with an exothermic reaction peak in DSC shifted to lower temperatures and lower scorch and curing times in the MDR. While a higher accelerator-to-sulfur ratio in combination with FLG leads to reduced crosslinking densities, the peroxide crosslinkers are hardly affected by the presence of FLG. The good agreement of crosslink densities obtained from the swelling behavior confirms the suitability of vulcameter measurements for monitoring the complex vulcanization process of such nanocomposite systems in a simple and efficient way. The reinforcing effect of FLG shows the highest relative improvements in weakly crosslinked nanocomposites. KW - Nanocomposite KW - Elastomers KW - Graphene KW - Crosslinking KW - Network KW - Rubber KW - Vulcanization PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560409 VL - 14 IS - 20 PB - MDPI AN - OPUS4-56040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -