TY - JOUR A1 - Schartel, Bernhard A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Krafft, Bernd A1 - Morys, Michael A1 - Böhning, Martin A1 - Rybak, Thomas T1 - Multilayer graphene rubber nanocomposites N2 - Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m²/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development. T2 - TOP 2016, VIII International Conference on “Times of Polymers and Composites” CY - Naples, Italy DA - 19.06.2016 KW - Graphene KW - Nanocomposite KW - Rubber PY - 2016 SN - 978-0-7354-1390-0 U6 - https://doi.org/10.1063/1.4949621 SN - 0094-243X SN - 1551-7616 VL - 1736 SP - 020046, 1 EP - 4 PB - AIP AN - OPUS4-36864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Patrick A1 - Morys, Michael A1 - Sut, Aleksandra A1 - Jäger, Christian A1 - Illerhaus, Bernhard A1 - Schartel, Bernhard T1 - Melamine poly(zinc phosphate) as flame retardant in epoxy resin: Decomposition pathways, molecular mechanisms and morphology of fire residues N2 - Synergistic multicomponent systems containing melamine poly(metal phosphate)s have been recently proposed as flame retardants. This work focuses on the decomposition pathways, molecular mechanisms and morphology of the fire residues of epoxy resin (EP) flame retarded with melamine poly(zinc phosphate) (MPZnP) to explain the modes of action and synergistic effects with selected synergists (melamine polyphosphate (MPP) and AlO(OH), respectively). The total load of flame retardants was always 20 wt.%. The decomposition pathways were investigated in detail via thermogravimetric Analysis coupled with Fourier transform infrared spectroscopy. The fire residues were investigated via elemental analysis und solid-state nuclear magnetic resonance spectroscopy. The morphology of intumescent fire residues was investigated via micro-computed tomography and scanning electron microscopy. EP + (MPZnP + MPP) formed a highly voluminous residue that showed structural features of both EP + MPZnP and EP + MPP, resulting in a highly effective protection layer. EP + (MPZnP + AlO(OH)) preserved the entire quantity of phosphorus content during combustion due to the Formation of Zn₂P₂O₇ and AlPO₄. KW - Melamine poly(metal phosphate) KW - Flame retardancy KW - Epoxy resin KW - Solid-state NMR KW - Micro-computed tomography KW - Fire residue PY - 2016 U6 - https://doi.org/10.1016/j.polymdegradstab.2016.06.023 SN - 0141-3910 VL - 130 SP - 307 EP - 319 PB - Elsevier AN - OPUS4-36863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Morys, Michael A1 - Schartel, Bernhard T1 - Multilayer graphene/chlorine-isobutene-isoprene rubber nanocomposites: the effect of dispersion N2 - Multilayer graphene (MLG) is composed of approximately 10 sheets of graphene. It is a promising nanofiller just starting to become commercially available. The Dispersion of the nanofiller is essential to exploit the properties of the nanocomposites and is dependent on the preparation method. In this study, direct incorporation of 3 parts per hundred of rubber (phr) MLG into chlorine-isobutene- isoprene rubber (CIIR) on a two-roll mill did not result in substantial enhancement of the material properties. In contrast, by pre-mixing the MLG (3 phr) with CIIR using an ultrasonically assisted solution mixing procedure followed by two-roll milling, the properties (rheological, curing, and mechanical) were improved substantially compared with the MLG/CIIR nanocomposites mixed only on the mill. The Young’s moduli of the nanocomposites mixed in solution increased by 38%. The CIIR/MLG nanocomposites produced via solution showed superior durability against weathering exposure. KW - Multilayer graphene KW - Nanocomposite KW - Dispersion KW - Rubber PY - 2016 U6 - https://doi.org/10.1002/pat.3740 SN - 1042-7147 SN - 1099-1581 VL - 27 IS - 7 SP - 872 EP - 881 PB - Wiley AN - OPUS4-36866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -