TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Altmann, Korinna T1 - Validation of microplastics detection methods and proficiency testing: Suitable microplastic reference materials for interlaboratory comparison N2 - Since microplastics (MPs) can be found everywhere and are becoming a problem of high concern, it is necessary to understand their physico-chemical properties. To obtain reliable analytical data a set of validated methods for sampling, sample preparation, detection, and data evaluation are needed. To meet these needs an interlaboratory comparison (ILC) with 84 participants worldwide has been organized under the international pre-standardisation platform VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods” within the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. In this ILC thermo-analytical methods (Py-GC/MS and TED-GC/MS) and vibrational methods (µ-Raman and µ-FTIR) have been tested and compared by providing a set of microplastic representative test materials and measurement protocols developed at BAM. The defined measurands were: particle number concentration, particle size distribution (PSD), and polymer identity and mass content. To increase the statistical quality, 6 samples were shipped together with blank samples. Hence, the ILC provides information on precision and accuracy of the results obtained with different methods as well as strengths and limitations of the proposed protocols. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - ILC KW - Microplastic KW - Method validation KW - Stakeholder KW - Reference materials KW - Polyethylene KW - Polyethylene Terephtalate PY - 2024 AN - OPUS4-60039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Benismail, Nizar A1 - Altmann, Korinna T1 - Interlaboratory comparisons for obtaining reliable data on microplastic detection methods N2 - Since microplastics (MPs) can be found everywhere and are becoming a problem of high concern, it is necessary to understand their occurrence and fate in the environment. However, to obtain data of high quality is very challenging, since measurement operating procedures differ from laboratory to laboratory. Currently, there are no standardized methods to analyze microplastics. One promissing possibility to adress standardization of the methodology and operating procedures are interlaboratory comparisons (ILCs). In this contribution we report the first results of an ILC on microplastic detection methods organized under the pre-stantdardisation plattform of VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods”, within the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. The ILC has gathered 84 participants all over the world representing all continents. BAM, as the project leader, produced a set of reference microplastic materials, which have been distributed to all the participants together with the measurement protocols and reporting data templates. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - ILC KW - Microplastic KW - Py-GC/MS KW - Polyethylene KW - µ-Raman KW - µ-FTIR KW - Polyethylene Terephtalate KW - TED-GC/MS PY - 2024 AN - OPUS4-60038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hennersdorf, Felix A1 - Weltschev, Margit A1 - Hertwig, Andreas T1 - ATR Investigations into the effect of ageing on HD-PE heating oil storage tanks after a service life of more than 30 years N2 - Heating oil storage tanks made of polyethylene grades have been on the market in Germany since the early 1970s. To ensure safety, their replacement is recommended by tank manufacturers after a period of 30 years. Polyethylene is subject to ageing by alteration of the properties during its life cycle. The degree of degradation and the nature of the process mainly depend on the chemical alteration of the polyethylene, the wall thickness of the tank and the environmental conditions. There are no data available on the long-term behaviour of the polyethylene grades, especially after a service life of more than 30 years. The aim of this investigation was to find a suitable test method to determine the factual degree of damage in comparison to the uncontaminated polyethylene grades. Material data of the used polyethylene grades are available because the BAM was the competent authority for the tests and expert reports for the approval of these tanks until the middle of the 1990s. Therefore, tank sections from the bottom, the shell and the roof of 22 individual storage tanks produced of polyethylene grades A and B have been examined by Melt Flow Rate (MFR) and Attenuated Total Reflectance (ATR). Their service life was in the range between 20 and 41 years. The MFR measurements of the tank sections showed differences in the values depending on the weight which was used (5 kg or 21.6 kg). An increase of the MFR was determined for the samples of polyethylene grade A, whereas a reduction of the MFR values was measured for most samples of polyethylene grade B. This grade is mainly subject to the internal ageing by cross-linkages, increased degree of branched molecules and loss of the plasticizer. ATR analysis exhibits an absorption band at 909 cm‒1 predominantly in samples of polyethylene grade A indicating chain scission and concomitantly formed terminal vinyl groups. This absorption band can be used for the characterization of the ageing of the polyethylene grades. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Heating oil tanks KW - Polyethylene KW - Ageing KW - Service life PY - 2019 AN - OPUS4-49000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Aging of elastomer O-rings and PE neutron shielding materials for radioactive waste containers N2 - Our institution BAM in Berlin, Germany is concerned with research and testing of materials in the context of safety in chemistry and technology. Our working group is involved in the licensing procedures of casks for radioactive waste. Besides, we’re doing research on aging and lifetime prediction of elastomer O-rings and investigate degradation and thermal expansion of PE neutron shielding materials. T2 - Polymers in nuclear applications CY - Online meeting DA - 01.12.2021 KW - Rubber KW - Polyethylene KW - Thermal expansion KW - Lifetime KW - Degradation PY - 2021 UR - https://energiforsk.se/media/30631/bam_material_aging_analysis.pdf AN - OPUS4-54191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Chatzigiannakis, Emmanouil A1 - Wachtendorf, Volker A1 - von der Ehe, Kerstin A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Discoloration effects of high-dose γ-irradiation and long-term thermal ageing of (U)HMW-PE N2 - Two polyethylene types with ultra high (UHMWPE) and high molecular weight (HMWPE), which are used as neutron radiation shielding materials in storage casks for radioactive waste, were subjected to gamma irradiation doses up to 600 kGy and subsequent thermal ageing at 125 °C for up to one year. One material was a medical grade UHMWPE and the other a HMWPE containing an antioxidant. Degradation effects in the materials were characterized using colorimetry, UV-Vis spectroscopy, MIR and FTIR measurements, DSC and, in the case of HMWPE, insoluble content determination. Both materials exhibited a yellowing upon irradiation. The discoloration of UHMWPE disappeared again after thermal ageing, which is why it was attributed to annealable color centers in the form of free radicals entrapped in the crystalline regions of the polymer that recombine during thermal ageing. Furthermore, oxidation species were observed with MIR and FTIR spectroscopy. For HMWPE, the yellowing occurred during both irradiation and thermal ageing and was correlated to antioxidant decomposition. Additionally, black spots were observed after thermal ageing of HMWPE that were attributed to reaction products of antioxidant derivatives and catalyst residues. While only little evidence of oxidation species was found in the light material parts, oxidation is expected to concentrate in the black spots as the catalyst residue promotes hydroperoxide decomposition and thus radical formation that initiate polymer oxidation T2 - Ionizing Radiation and Polymers Conference CY - Giens, France DA - 25.09.2016 KW - Polyethylene KW - Gamma-irradiation KW - Yellowing KW - Degradation PY - 2016 AN - OPUS4-38001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Lützow, Wolfgang T1 - Zeitstandverhalten und strukturelle Veränderungen von vielfach wiederverarbeiteten Polyethylenen N2 - Wiederverarbeitung von Produktionsabfällen, möglichst in demselben Produktionsbetrieb oder Produktionszweig, in dem sie entstanden sind. Im Unterschied zu Recycling liegen hier vor Beginn der Wiederverarbeitung sortenreine, nicht verunreinigte und nicht durch Praxisbeanspruchung geschädigte Abfälle vor, sogenannte Reststoffe. T3 - BAM Forschungsberichtreihe - 112 KW - Werkstoffprüfung KW - Recycling KW - Extrudieren KW - Polyethylene PY - 1985 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-3380 SN - 978-3-88314-409-6 SN - 0938-5533 VL - 112 SP - 1 EP - 52 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-338 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schilling, Markus A1 - Marschall, Niklas A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Dataset of comprehensive Full-notch creep tests (FNCT) of selected high-density polyethylene (PE-HD) materials N2 - The dataset provided in this repository comprises data obtained from a series of full-notch creep tests (FNCT) performed on selected high-density polyethylene (PE-HD) materials (for further details, see section 1 Materials in this document) in accordance with the corresponding standard ISO 16770. The FNCT is one of the mechanical testing procedures used to characterize polymer materials with respect to their environmental stress cracking (ESC) behavior. It is widely applied for PE-HD materials, that are predominantly used for pipe and container applications. It is based on the determination of the time to failure for a test specimen under constant mechanical load in a well-defined and temperature controlled liquid environment. The test device used here also allows for continuous monitoring of applied force, specimen elongation and temperature. KW - Polyethylene KW - Environmental Stress Cracking KW - Full-notch creep test KW - PE-HD KW - Crack growth PY - 2023 DO - https://doi.org/10.5281/zenodo.10143351 PB - Zenodo CY - Geneva AN - OPUS4-58835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wachtendorf, Volker A1 - Barthel, Anne-Kathrin A1 - Geburtig, Anja A1 - Trubiroha, P. ED - Reichert, T. T1 - Low-Temperature Irradiation Experiments for PE, PA, and PC Matrices T2 - Proceedings 8th European Weathering Symposium - Natural and Artificial Ageing of Polymers N2 - In this paper, we demonstrate the effects of radiation exposures of polymeric materials with UV-A 340 nm lamps (ISO 4892-3, Type 1A) at -10 °C in comparison to an irradiation at +50 °C using a Global UV Test 200 fluorescent lamp device from Weiss Umwelttechnik GmbH, which incorporates an active cooling appliance. While the effects at -10 °C actually are lower than at + 50°C their extent was clearly beyond expectations. T2 - 8th European Weathering Symposium CY - Vienna, Austria DA - 20.09.2017 KW - Artificial weathering KW - Irradiation KW - Low-temperature KW - Photo-oxidation KW - Polyamide KW - Polycarbonate KW - Polyethylene PY - 2017 SN - 978-3-9818507-1-0 VL - 18 SP - Paper 22, 319 EP - 329 PB - Thomas Würtz Grafik Design CY - Karlsruhe AN - OPUS4-42130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Hoffmann, Gabi A1 - Rehfeldt, Rainer A1 - Kohl, Anka T1 - Investigations on the degree of damage of polyethylene grades as materials of heating oil storage tanks after a service life of more than 30 years N2 - Tanks for heating oil made of polyethylene grades have been on the market since the early 1970s in Germany. Tank manufacturers recommend the replacement of the tanks after a period of 30 years due to guarantee safety. Polyethylene grades are subject to ageing by alteration of the properties during their life cycle. The degree of ageing and the nature of the degradation process mainly depend on the chemical degradation of the polyethylene, the wall thickness of the tank and the environmental conditions. There are no results available on the long-term behavior of the polyethylene grades, especially after a service life of more than 30 years. The aim of this investigation was the determination of the factual degree of damage in comparison to the uncontaminated polyethylene grades. Material data of the used polyethylene grades are available because the BAM was the competent authority for the tests and expert reports for the approval of these tanks until the middle of the 1990s. The determination of the Melt Flow Rate (MFR) and the Fourier Transmission IR Spectroscopy (FTIR) of tank sections from the bottom, the shell and the roof of 10 segregated heating oil storage tanks produced of polyethylene grades A and B were used as tests methods. The MFR measurements of the tank sections showed differences in the values depending on the weight which was used (5 kg or 21.6 kg). A reduction of the MFR values was measured for most of the sections of tanks made of polyethylene grade B after a service life of the tanks of more than 30 years. This grade is mainly subject to the internal ageing by cross-linkages, increased degree of branched molecules and loss of the plasticizer, and to a lesser extent by oxidative degradation. The FTIR analysis, especially of tank sections of the bottom and the shell showed that the intensity of the CH2 asymmetric and symmetric stretching vibrations in the range: 2800 - 2900 cm-1 and the CH2 bending deformation vibration at 1400 cm-1 increased due chain scissions. The intensity of the carbonyl stretching vibration C=O at 1740 cm-1 is low. The carbonyl index characterizes the degree of oxidation. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Heating oil storage tanks KW - Polyethylene KW - Degree of damage KW - Melt Flow Rate (MFR) KW - FTIR PY - 2018 AN - OPUS4-45939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Hoffmann, Gabi A1 - Haufe, Manuela A1 - Kohl, Anka T1 - Investigations on the degree of damage of polyethylene grades of heating oil storage tanks after a service life in excess of 25 years N2 - Plastic storage tanks for heating oil have been on the market since the early 1970s in Germany, mainly made from polyethylene grades. Tank manufacturers and experts examining the tanks recommend the replacement of the tanks to ensure the safety after a period of 30 years. The tank manufacturer is legally obliged to specify the service life of the tanks. Polyethylene is subject to ageing by alteration of the properties during its life cycle. A distinction is made between internal and external ageing processes. The internal ageing, such as the breakdown of internal stresses, post-crystallization, phase sepa-ration of multicomponent systems and plasticizer migration is attributed to thermodynamically instable conditions of the plastic material. The external ageing in form of stress cracking, fatigue cracking, thermooxidative degradation or swelling is based on physical or chemical effects of the environment of the polyethylene grade. The degree of ageing and the nature of the degradation process mainly depend on the chemical degradation of the polyethylene, the wall thickness of the tank and the environmental conditions. There are no results available on the long-term behaviour of the polyethylene grades used as materials for heating oil storage tanks, especially after a service life of more than 25 years. The aim of this investigation was the determination of the factual degree of damage in comparison to the uncontaminated polyethylene grades. Data on the melt flow rate (MFR) and density of the used polyethylene grades are available because the BAM was the competent authority for the approval of the plastic heating oil storage tanks until the end of the 1980s. The technical service of specialist companies for fuel tank disposal supplied tank sections from the bottom, the shell and the roof of 8 segregated heating oil storage tanks. Some of the tanks had been in service for more than 30 years. Two polyethylene grades mainly were used as materials for these tanks over this time. The determination of the MFR according to EN ISO 1133 and the FTIR spectroscopy followed standard test methods. The highest average percentage increase in the MFR was determined as 31- 43 % for the bottom section of the tanks, for both the inner shell and the outer shell. The lowest increase in MFR was measured for the top of the tank, with 6 - 12 % for the inner shell and 0 - 8 % for the outer shell. The tank shell sections had an average percentage increase in MFR of 10 - 33 % for the inner shell and of 14 - 40 % for the outer shell. The oxidative damage of the polyethylene grades was highest in the bottom area due to the permanent contact with the heating oil and degradation products. The microtome cuttings were analyzed with image-guided infrared microscopy in the transmission mode and confirmed the results obtained with the MFR measurements. In summary it can be concluded that the oxidative damage of the polyethylene grades after long-term contact with heating oil is relative low. T2 - EUROCORR 2017 CY - Prag, Czech Republic DA - 03.09.2017 KW - Polyethylene KW - Heating oil tanks KW - Service life KW - Degree of degradation PY - 2017 AN - OPUS4-41907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -