TY - JOUR A1 - Glowacka, A. A1 - Wozniak, M. J. A1 - Nolze, Gert A1 - Swiatnicki, W. A. T1 - Hydrogen induced phase transformations in austenitic-ferritic steel N2 - The hydrogen influence on the microstructure of the austenitic-ferritic Cr22-Ni5-Mo3 stainless steel was investigated. Cathodic hydrogen charging was performed electrochemically from aqueous solution of 0.1M H2SO4 with hydrogen entry promoter addition. The aim of this study was to reveal microstructural changes appearing during the hydrogen charging and particularly to clarify the occurrence of phase transformations induced by hydrogen. The specific changes in both phases of steel were observed. In the ferritic phase, strong increase of dislocation density was noticed. Longer time of hydrogen charging leaded also to the strips and twin plates formation in ferrite phase. In the austenitic phase, the generation of stacking faults, followed by the formation of α' martensite was remarked. KW - Steel KW - Hydrogen KW - Embrittlement KW - Electron backscatter diffraction KW - SEM PY - 2006 U6 - https://doi.org/10.4028/www.scientific.net/SSP.112.133 SN - 1662-9779 VL - 112 SP - 133 EP - 140 AN - OPUS4-38031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Geist, V. T1 - A new method for the investigation of orientation relationships in meteoritic plessite N2 - The orientation relationship (OR) between the bcc and fcc phase in the plessite microstructure of the iron meteorites Watson, Agpalilik and Gibeon has been analysed in a scanning electron microscope using electron back-scattered diffraction (EBSD). A very strong OR exists, independently on the analysed plessite type and the observed spreading of single orientation data. The agreement between the experimental orientation distribution and existing models varies for each meteorite. The black plessite in the Agpalilik corresponds to the Nishiyama-Wassermann model whereas the Duplex plessite of the Gibeon meteorite shows an OR close to the Kurdjumov-Sachs model. The Watson meteorite is strongly deformed so that a general OR is difficult to determine due to the blurred experimental orientation distribution. KW - Meteorite KW - Orientation relationship KW - Steel KW - Electron backscatter diffraction KW - Kurdjumov-Sachs KW - Nishiyama-Wassermann PY - 2004 U6 - https://doi.org/10.1002/crat.200310193 SN - 0023-4753 SN - 0232-1300 VL - 39 IS - 4 SP - 343 EP - 352 AN - OPUS4-38032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glowacka, A. A1 - Nolze, Gert A1 - Swiatnicki, W. A. T1 - EBSD study of corrosion fatigue of austenitic-ferritic steel N2 - Fatigue crack propagation investigations have been performed in austenitic-ferritic duplex stainless steel H22N5M3 in air and during hydrogen charging, using various frequencies of loading. Strong differences of crack propagation velocity depending on the test conditions were noticed. Lower frequency with applied hydrogen charging led to the huge increase of crack propagation velocity compared to the tests performed in air. To understand such a behaviour in each case and characterize crack mode, the samples were observed using electron back-scattered diffraction (EBSD). It was shown that in air, the fatigue crack propagation involved plastic deformation and the resulting cracks had ductile character. The presence of hydrogen led to more brittle mode of cracking. This effect was also connected with frequency of loading: lower frequency, which assured longer time for hydrogen-crack tip interaction, resulted in the highest crack propagation velocity and the brittle cracking mode with lower amount of plastic deformation. The performed observations indicated that the path of the crack went mostly transgranularly through both austenite and ferrite phases. Phase and grain boundaries were not the preferred paths for crack propagation. KW - Hydrogen KW - Embrittlement KW - Electron backscatter diffraction KW - Steel PY - 2006 SN - 1733-3490 SN - 0004-0770 SN - 0860-7052 VL - 51 IS - 1 SP - 7 EP - 10 AN - OPUS4-38029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Interphase boundary characterization in duplex steel and iron meteorites using EBSD technique N2 - The properties of materials are mainly described by the orientation distribution of the crystalline phases in a material. Beside the so considered anisotropy also the grain as well as phase boundaries are of extreme importance for a whole string of properties, e.g. the strength of a material. On the example of the interface between fcc and bcc iron the discovered and derived models are discussed. Although the common models are based on the crystal lattice description, the atomic configuration on the interface is analysed. Since experimentally a wide spread of orientations data appears the consideration of the frequency distribution is proposed to find at least the main orientation relationship between fcc and bcc. High-indexed pole figures as well as the Euler subspace are introduced in order to increase the accuracy and to compare different measurements. For the sake of simplicity EBSD measurements on iron meteorites are used since they commonly consist of large fcc single crystals which transformed to a low and very specific number of bcc grains. In special cases the described procedure could also be used for steels. KW - Orientation relationships KW - Electron backscatter diffraction KW - Steel KW - Iron meteorites KW - Kurdjumov-Sachs KW - Nishiyama-Wassermann PY - 2006 SN - 1733-3490 SN - 0004-0770 SN - 0860-7052 VL - 51 IS - 1 SP - 15 EP - 22 AN - OPUS4-38030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -