TY - CONF A1 - Resch-Genger, Ute A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Güttler, Arne A1 - Kaiser, Martin A1 - Hatami, Soheil A1 - Resch-Genger, Ute T1 - Methods for the calibration of fluorescence setups and measurement of photoluminescence quantum yields N2 - Photoluminescence techniques are amongst the most widely used tools in the material and life sciences, with new and exciting applications continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. Generally recognized drawbacks, however, are signals, that contain unwanted wavelength- and polarization contributions from instrument-dependent effects, which are also time-dependent due to aging of instrument-components, and difficulties to measure absolute fluorescence intensities, thus rendering the use of intensity standards mandatory for quantification. Recent developments in fluorescence-based assays in clinical, pharmaceutical, biotechnological and other areas, in conjunction with the increasing need for instrument performance validation and global trends to harmonize measurements have boosted the demand for robust, easy-to-use, readily-available, reliable, and well documented fluorescence standards. This includes e.g. fluorescence standards for the consideration of instrument-specific spectral and intensity distortions of measured signals and instrument performance validation as well as fluorescence intensity standards for the quantification from measured intensities and for signal refencing, thereby accounting for excitation light-induced intensity fluctuations. Moreover, there is an ever increasing need for fluorescence quantum yield standards with well known and preferably certified quantum yields. Moreover, although already challenging for the UV/vis/NIR spectral region, there is an increasing interest particularly by the fluorescence imaging community to expand the waveelngth region applied from the NIR to measurements > 1000 nm. Presently, there are no fluorescence standards for this wavelength region available, rendering the control of instrument calibration in this wavelength region basically impossible. In this respect, we present reliable and validated procedures for the calibration of fluorescence measuring devices from 300 nm to 1700 nm using different types of physical and chemical standards. Moreover, a new set of fluorescence quantum yield standards covering the UV/vis/NIR is been introduced that is currently under certification at BAM. T2 - Arbeitskreis, Mass Spectrometry Facility CY - University of Berkeley, CA, USA DA - 13.02.2016 KW - pharmaceutical KW - biotechnological PY - 2016 AN - OPUS4-35842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -