TY - JOUR A1 - Roloff, Alexander A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Borcherding, H. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Quantification of Aldehydes on Polymeric Microbead Surfaces via Catch and Release of Reporter Chromophores JF - Analytical Chemistry N2 - Aldehyde moieties on 2D-supports or microand nanoparticles can function as anchor groups for the attachment of biomolecules or as reversible binding sites for proteins on cell surfaces. The use of aldehyde-based materials in bioanalytical and medical settings calls for reliable methods to detect and quantify this functionality. We report here on a versatile concept to quantify the accessible aldehyde moieties on particle surfaces through the specific binding and subsequent release of small reporter molecules such as fluorescent dyes and nonfluorescent chromophores utilizing acylhydrazone formation as a reversible covalent labeling strategy. This is representatively demonstrated for a set of polymer microparticles with different aldehyde labeling densities. Excess reporter molecules can be easily removed by washing, eliminating inaccuracies caused by unspecific adsorption to hydrophobic surfaces. Cleavage of hydrazones at acidic pH assisted by a carbonyl trap releases the fluorescent reporters rapidly and quasi-quantitatively and allows for their fluorometric detection at low concentration. Importantly, this strategy separates the signal-generating molecules from the bead surface. This circumvents common issues associated with light scattering and signal distortions that are caused by binding-induced changes in reporter fluorescence as well as quenching dye− dye interactions on crowded particle surfaces. In addition, we demonstrate that the release of a nonfluorescent chromophore via disulfide cleavage and subsequent quantification by absorption spectroscopy gives comparable results, verifying that both assays are capable of rapid and sensitive quantification of aldehydes on microbead surfaces. These strategies enable a quantitative comparison of bead batches with different functionalization densities, and a qualitative prediction of their coupling efficiencies in bioconjugations, as demonstrated in reductive amination reactions with Streptavidin. KW - Fluorescent label KW - Surface group quantification KW - Polymer particle KW - Cleavable linker KW - Catch and release assay PY - 2019 DO - https://doi.org/10.1021/acs.analchem.8b05515 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 14 SP - 8827 EP - 8834 PB - ACS Publications AN - OPUS4-48284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Eckert, J. G. A1 - Graf, Rebecca T. A1 - Kunst, A. A1 - Wegner, Karl David A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Correlating semiconductor nanoparticle architecture and applicability for the controlled encoding of luminescent polymer microparticles JF - Scientific Reports N2 - Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure–property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads. KW - Quantitative spectroscopy KW - Energy transfer KW - Synthesis KW - Surface chemistry KW - Semiconductor quantum dot KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Polymer particle KW - Quantum rod KW - Nanoplatelet PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602206 DO - https://doi.org/10.1038/s41598-024-62591-1 VL - 14 SP - 1 EP - 16 AN - OPUS4-60220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -