TY - CONF A1 - Müller, Urs T1 - Lime mortar for the conservation of the Timur Shah Mausoleum T2 - Standort H23/R012, BAM CY - Berlin, Germany DA - 02.05.2006 PY - 2006 AN - OPUS4-12486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rübner, Katrin A1 - Goering, Harald A1 - Klobes, Peter A1 - Tschritter, H. T1 - Investigation on the structure of silica/polyurethane nanocomposites N2 - Inorganic-organic nanocomposites are synthesised from polyethylene glycol with an average molar mass of 600 g/mol containing colloidal silica (silicic acid) and diphenyl methane diisocyanate as compact and foamed materials according to the European patent EP1414880. Beside the macroscopic properties, the pore structure and the structure of the polymer matrix of the silica/polyurethane nanocomposites with varying silica contents were studied. T2 - 8th International Symposium on the Characterisation of Porous Solids CY - Edinburgh, Scotland DA - 11.06.2008 PY - 2008 AN - OPUS4-16445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klobes, Peter A1 - Rübner, Katrin A1 - Prinz, Carsten A1 - Hempel, S. T1 - Investigation on the microstructure of ultra high performance concrete N2 - Ultra-high performance concrete (UHPC) is characterised by compressive strengths above 150 MPa and an outstanding durability. These properties are achieved by optimisation of the mixture composition, the mixing procedure as well as the curing conditions of the concrete. Heat curing as well as the use of vacuum mixers may contribute to the high strength. The very high brittleness of UHPC can be compensated by the addition of steel or polymer fibres. UHPC is produced using a very low water/cement ratio of 0.25 or smaller in combination with adding of polycarboxylate ether based superplasticisers. Furthermore, finest cements with contents of 500 kg/m³, defined selections of coarse and fine aggregates with a maximum grain size between 0.5 and 8 mm and fine pozzolanic (silica fume, fly ash) and inert additives (quartz filler) are used. In doing so, the aim is to obtain a very high packing density of the cement paste matrix and the aggregate/paste interface while a very homogeneous microstructure with a high calcium silicate hydrate (CSH) portion is formed. In the case of optimal mixing and curing conditions, UHPC contains almost no pores and microcracks. Therefore, studies of porosity and pore structure are very important to characterise UHPC materials in connection with the mixture optimisation. Here, the experimental results for UHPC are presented in comparison with those of high-strength concrete (100 MPa) and normal-strength concrete (35 MPa), respectively. T2 - 8th International Symposium on the characterisation of Porous Solids CY - Edinburgh, Scotland DA - 11.06.2008 PY - 2008 AN - OPUS4-16396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rübner, Katrin A1 - Kühne, Hans-Carsten T1 - Pore structure of concrete with recycling aggregates N2 - Processed building rubble containing about 90 % of crushed concrete can be used as recycling aggregates. The reuse for the production of new high-grade concrete requires a knowledge of the engineering properties as well as the pore structure of These materials. Two recycling aggregates and the concretes made with them were studied. T2 - 33th International Geological Congress (IGC) Symposium on Mineral Resources - Constructions Materials (MRC) CY - Oslo, Norway DA - 06.08.2008 PY - 2008 AN - OPUS4-16778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ried, Peter A1 - Gaber, Martin A1 - Kluge, Martin A1 - Müller, Ralf A1 - Holtappels, Kai A1 - Eliezer, Dan T1 - H2-permeability and burst pressure of glass capillaries N2 - This publication deals with the topics: pressure loading, permeability and burst pressure T2 - Intern. Con. on Glass ICG 2010 CY - Bahia, Brazil DA - 20.09.2010 KW - Pressure loading KW - Permeability KW - Burst pressure PY - 2010 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. AN - OPUS4-22296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Chaudhary, A. A1 - Resch-Genger, Ute T1 - Development of amorphous silica particle based reference materials for surface functional group quantification N2 - Functionalized nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing, electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties.1 Besides other key parameters, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, must be considered for a better performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, particle standards with well-designed surfaces and methods for functional group quantification can foster the sustainable development of functional and safe(r) NM.2 Here we provide a brief overview of the ongoing research in division Biophotonics to design tailored amorphous silica reference particles with bioanalytically relevant functional groups and ligands, for the development of standardized and validated surface functional group quantification methods. T2 - Workshop NanoRiskSD project CY - Berlin, Germany DA - 09.06.2022 KW - Nanoparticle KW - Surface analysis KW - Silica KW - Fluorescence KW - Assay PY - 2022 AN - OPUS4-55004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, Marius A1 - Low, Jian L. A1 - Paulus, Beate A1 - Roth, Christina A1 - Emmerling, Franziska T1 - The Effect of Fluorine on Catalysts for the Oxygen Reduction Reaction obtained from Metal Organic Frameworks N2 - The oxygen reduction reaction (ORR) – an important reaction in electrochemical devices, such as fuel cells - is characterized by its sluggish kinetics and therefore requires catalysis. The industry currently relies on platinum as a catalyst, although it is scarce and expensive, hindering the commercial breakthrough of fuel cells in automotive applications. Platinum-free catalysts on basis of nitrogen- and metal doped carbons (NMCs) and fluorinated carbons are promising materials to replace platinum-based catalysts for the ORR. In this work we prepared six metal-organic frameworks (MOFs) by mechanical ball mill grinding and studied their formation by in-situ powder X-ray diffraction. Furthermore, the samples were carbonized under controlled conditions (900°C, 1h, N2-atmosphere) to yield carbon materials, that were employed in ORR-electrocatalysis. The effect of Co-doping and fluorination was systematically studied and outstanding ORR activity was found for the catalyst prepared from the Co-doped fluorinated ZIF-8. T2 - International Symposium on Fluorine-specific interactions CY - Berlin, Germany DA - 27.09.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Influence of molecular orientation on the environmental stress cracking resistance N2 - Molecular orientation has a significant effect on the material properties of polymers. Preferential orientation of the microstructure (polymer chains or crystallites) in a specific direction or plane often enhances the material properties, especially if the high-strength covalent bonds are primarily exposed to loads instead of the weaker van der Waals bonds. However, the orientation-dependent microstructure and its mechanical behavior is in general already well understood by many scientific studies [1-3]. Isotropic materials are frequently required for an intrinsic material characterization without prevailing processing-induced properties, as is the case for Full Notch Creep Test (FNCT) [4] addressing environmental stress cracking (ESC) in high-density polyethylene (PE-HD) [5, 6]. Since ESC is one of the major limiting issues for long-term performance of PE-HD pipes and containers [7], which in contrast have a production-related preferential orientated microstructure due to extrusion or extrusion blow molding, it is important to additionally investigate the ESC resistance of such anisotropic microstructure. Investigations of the slow crack growth (SCG) with respect to the molecular orientation generally obtain a factor of 1.2 up to 4.7 between crack growth perpendicular to the extrusion direction and crack growth parallel to the extrusion direction 8. Based on FNCT investigations with an aqueous detergent solution as environmental medium, hot pressed sheets with isotropic morphology are compared with extruded sheets from which specimens with different orientation angles are taken. However, the time to failure obtained by FNCT is also significantly influenced by the different cooling conditions under which the final morphology is formed. The tendency of the specimen to fail due to ESC is investigated as a function of environmental medium temperature. For a more detailed analysis of the affecting parameters in the manufacturing process, the ESC resistance is discussed considering the differences in crystallinity as revealed by thermal analysis. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - Orientation-dependent microstructure KW - High-density polyethylene KW - Full Notch Creep Test PY - 2021 AN - OPUS4-53399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fayet, G. A1 - Wehrstedt, Klaus-Dieter A1 - Knorr, Annett A1 - Rotureau, P. T1 - First models to predict thermal decomposition properties of possible self-reactive substances based on industrial datasets N2 - Self-reactive substances are unstable chemical substances which can easily decompose and may lead to explosion. For this reason, their thermal stability properties are required within regulatory frameworks related to chemicals in order to assess their hazardous properties. Due to the fast development and availability of computers, predictive approaches like QSPR models are increasingly used in the evaluation process of hazardous substances complementary to experiments. In that context, the HAZPRED project (2015-2018) aimed to develop QSPR models to predict physical hazards of substances to fill the lack of knowledge on these hazardous substances quickly. An experimental campaign, based on 50 samples provided by Industrial producers, was carried out on potential self-reactive substances, for which no QSPR model already existed. Their heats of decomposition were characterized using differential scanning calorimetry in homogeneous experimental conditions. QSPR models were derived using the GA-MLR method (using a genetic algorithm and multi-linear regressions) using molecular descriptors calculated by Dragon software based on both 3D molecular structures from density functional theory (DFT) optimizations, to access three-dimensional descriptors, and SMILES codes, favoring the access to simpler models, requiring no preliminary quantum chemical calculations. All models respected the OECD validation guidelines for regulatory acceptability of QSPR models. They were tested by internal and external validation tests and their applicability domains were defined and analyzed. If improved models should be expected with larger database (and a better ratio between size and chemical diversity), these first models already represent a screening tool capable to access early reactive hazards. T2 - 19th International Workshop on Quantitative Structure-Activity Relationships in Environmental and Health Sciences CY - Online meeting DA - 07.06.2021 KW - QSPR KW - Self-reactive substances KW - Thermal decomposition PY - 2021 AN - OPUS4-53178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Tipping the Energy Scales to Control Mechanochemical Polymorphism N2 - Control of ball milling conversions is required before the full potential of mechanochemical processing can be realized. It is well known that many parameters affect the outcome of mechanochemical polymorphism, but the energy of ball milling itself is often overlooked. We show here how this parameter alone can exert a significant influence on the polymorphic outcome of ball mill grinding by allowing the selective isolation of two polymorphic forms in their pure form under the same grinding conditions. Furthermore, we show how apparent mechanochemical equilibria can be deceptive. Our results clearly demonstrate the need for careful design and interpretation of ball milling experiments beyond current thinking. T2 - SALSA make and measure CY - Online meeting DA - 16.09.2021 KW - Mechanochemistry KW - Energy KW - Polymorph KW - Cocrystal PY - 2021 AN - OPUS4-53293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Kneiske, Sönke A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Lewis-acidic Zr fluoride catalyst N2 - Kemnitz et al. developed a fluorolytic route to access metal fluorides 2 such as AlF3 3 and MgF2 4 which possess a high surface area. In aluminium-based systems, the synthetic approach led to amorphous xerogels that can be further converted into Lewis superacids.3 Still, despite zirconium oxide being described as a stronger Lewis acid than other metal oxides 4 zirconium fluoride-based materials have only recently been reported or investigated. 6 In this work we extend the class of amorphous Lewis acidic heterogeneous catalysts to an amorphous ZrF4 that is active in C-F bond activation. T2 - 2nd South African Fluorine Symposium CY - Sun City, South Africa DA - 11.02.2024 KW - ZrF4 KW - Heterogeneous catalysis KW - C-F bond activation PY - 2024 AN - OPUS4-59617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - Zirconium chloro fluoride as catalyst for C-F bond activation and HF transfer of fluoroalkanes N2 - In this work1, we have successfully synthesised amorphous zirconium chloro fluoride (ZCF), which exhibits medium lewis acidity. In addition to investigating the local coordination sphere around the Zr atoms and the material properties, we were able to establish a catalytic behavior of ZCF in C-F bond activation reactions. We present the first heterogeneous catalyst that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - RSC Poster 2024 CY - Online meeting DA - 05.03.2024 KW - ZCF PY - 2024 AN - OPUS4-59619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - Zirconium chloro fluoride as catalyst for C-F bond activation and HF transfer of fluoroalkanes N2 - In this work, we successfully synthesized amorphous zirconium chloro fluoride (ZCF), which exhibits medium lewis acidity. In addition to investigating the local coordination sphere around the Zr atoms and the material properties, we were able to establish a catalytic behavior of ZCF in C-F bond activation reactions. We present a heterogeneous catalyst that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - MC 16 CY - Dublin, Ireland DA - 03.07.2023 KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation PY - 2023 AN - OPUS4-58052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Durlo Tambara, Luis Urbano A1 - Batista, I. D. A1 - Carneiro, J. C. A1 - Silva, L. G. C. H. A1 - Taborda-Barraza, M. A1 - Azevedo, A. R. G. T1 - Influence of dredging mud on the calcium sulfoaluminate cement hydration N2 - Dredging sediment refers to materials removed from the bottom of a water body during dredging operations. Mainly the dreading mud contains clay, silt, sand, water, and alkalis. This work incorporated dredging mud into the calcium sulfoaluminate cement at replacement levels of 0%, 10%, 30%, and 50% by weight. Pastes were evaluated after 1d, 28d, and 90d- hydration through mechanical strengths and the reaction rate by isothermal conduction calorimetry. XRD and MIP characterized the reaction products. The findings showed that small replacements (10% and 30%) increased early strength with higher ettringite formation in the system at 1d of curing. However, the evolution of mechanical strength was lower than the reference (0% replacement) over time. The results showed that in low replacement dosages, the dredging mud act as a nucleation site for the hydration of calcium sulfoaluminate phases. T2 - 7th International Conference Non-Traditional Cement & Concrete (NTCC) CY - Brno, Czech Republic DA - 25.06.2023 KW - Calcium sulfoaluminate cement KW - Dredging mud KW - Hydration KW - Paste PY - 2023 AN - OPUS4-58054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Novel Flow Cell Designs for Process Monitoring with Compact NMR Spectroscopy N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction characterization and process control. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. This paves the way for industrial automation in real process environments. The design of failsafe, temperature and pressure resistant flow through cells along with their NMR-specific requirements is an essential cornerstone to enter industrial production plants and fulfill explosion safety requirements. Additionally, if fast reactions are monitored, suitable mixing devices need to be placed in close vicinity to the measuring volume to mix the reactants properly. NMR-specific requirements aim at full quantitative pre-magnetization and acquisition with maximum sensitivity while reducing sample transfer times and dwell-times. All parameters are individually dependent on the applied NMR instrument. Luckily, an increasing number of applications are reported together with an increasing variety of commercial equipment. However, these contributions have to be reviewed thoroughly. The performance of sample flow cells commonly used in online analytics and especially for low-field NMR spectroscopy was experimentally and theoretically investigated by 1H-NMR experiments and numerical simulations. Especially, the applicability of 3D printed zirconium dioxide for innovative flow cell designs was of interest. Here, we demonstrate and discuss an automated test method to determine the critical parameters of flow through cells for quantitative online NMR spectroscopy. The setup is based on randomized setpoints of flow rates in order to reduce temperature related effects. Five flow cells and tubing were assessed and compared for high-field as well as low-field NMR spectrometers. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) 2018 CY - La Jolla, California, USA DA - 04.03.2018 KW - Process Monitoring KW - Process Control KW - Flow Cell KW - Online NMR Spectroscopy KW - Additive Manufacturing KW - CONSENS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444364 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Dautain, Olivier A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Optimizing the Green Synthesis of ZIF-8 by Reactive Extrusion Using In Situ Raman Spectroscopy N2 - ZIF-8 is a prominent member of the zeolitic imidazolate frameworks (ZIFs) subfamily of MOFs which possesses high thermal, chemical, and mechanical stabilities. Different routes have been explored to achieve the large-scale production of ZIF-8. However, these synthetic procedures are often inconsistent with the principles of sustainable chemical manufacturing. Aimed at developing scalable and greener production of ZIF-8, we adapted our previously reported in-batch „mix and wait“ synthesis[2] to continuous extrusion. To optimize the process, in-situ Raman spectroscopy was applied. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of MOF syntheses in view of their large-scale production. The synthesis of ZIF-8 was performed using a twin-screw extruder ZE 12 HMI equipped with an automatic volumetric feeder ZD 12B (Three-Tec GmbH, Switzerland) and peristaltic pump BT-L (Lead Fluid, China). The process was monitored in six different zones using a Raman RXN1TM analyzer (Kaiser Optical Systems, France) with a non-contact probe head. PMMA screw-in parts, which are transparent to Raman laser radiation, were specially manufactured to provide the laser focus within the barrel. PXRD, TGA, N2 adsorption measurements, and SEM were used as complementary techniques to characterize the extrudates. The batch ‘mix and wait’ synthesis of ZIF-8, consisting of bringing solid basic zinc carbonate and 2-methylimidazole in contact in a closed vial, was successfully adapted to reactive extrusion. The crystalline ZIF-8 continuously forms in the extruder under the mixing of solid reagents in the presence of a catalytic amounts of H2O or EtOH. The temperature, type of liquid, feeding rate, and excess of linker were optimized using in situ Raman spectroscopy. Pure and highly crystalline ZIF-8 was isolated at 40 °C by adding a catalytic amount of EtOH and a linker excess of 25%. The resulting material has excellent porosity with the BET surface area slightly exceeding that of the reference Basolite® Z1200 (1816 vs. 1734 m2 g–1). The reaction could yield ~ 3 kg d–1 assuming a continuous operation, with a space-time yield of ca. 67,000 kg m–3 d–1. The present method was compared to the published pathways based on Green Chemistry principles and proved to have the highest potential for large-scale production of ZIF-8. T2 - 5th European Conference on Metal Organic Frameworks and Porous Polymers (EuroMOF2023) CY - Granada, Spain DA - 24.09.2023 KW - In situ Raman KW - Reactive extrusion KW - Green chemistry KW - Mechanochemistry KW - MOFs KW - Large-scale synthesis PY - 2023 AN - OPUS4-58950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Mixing Reactions Enable Green Synthesis of ZIF-8 at Large Scale: Batch and Continuous Modes N2 - We report the scale-up of a batch solid synthesis of zeolitic imidazolate framework-8 (ZIF-8) for reactive extrusion. The crystalline product forms in the extruder directly under the mixture of solid 2-methylimidazole and basic zinc carbonate in the presence of a catalytic amount of liquid. The process parameters such as temperature, liquid type, feeding rate, and linker excess were optimized using the setup specifically designed for in situ Raman spectroscopy. Highly crystalline ZIF-8 with a Brunauer–Emmett–Teller (BET) surface area of 1816 m2 g–1 was quantitatively prepared at mild temperature using a catalytic amount of ethanol and a small excess of the linker. Finally, we developed a simple and comprehensive approach to evaluating the environmental friendliness and scalability of metal–organic framework (MOF) syntheses in view of their large-scale production. T2 - 2023 #RSCPoster Twitter Conference CY - Online meeting DA - 28.02.2023 KW - MOFs KW - Green chemistry KW - Reactive extrusion KW - Large-scale production KW - Mechanochemistry KW - Zeolitic imidazolate framework PY - 2023 UR - https://twitter.com/NikitaGugin/status/1630538555675099139 AN - OPUS4-58951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Analysis of deuterium in austenitic stainless steel AISI 304L by Time-of-Flight Secondary Ion Mass Spectrometry N2 - Due to their excellent combination of ductility, strength and corrosive resistance, austenitic stainless steels (ASS) are widely used in many industrial applications. Thus, these steel grades can be found as structural components in the (petro-)chemical industry, in offshore applications and more recent for storage and transport of hydrogen fuel. Steels employed for these applications are exposed to aggressive environments and hydrogen containing media. The ingress and accumulation of hydrogen into the microstructure is commonly observed during service leading to a phenomenon called “hydrogen embrittlement”. A loss in ductility and strength, the formation of cracks and phase transformations are typical features of this hydrogen-induced degradation of mechanical properties. Although, great efforts are made to understanding hydrogen embrittlement, there is an ongoing debate of the underlying mechanisms. This knowledge is crucial for the safe use and durability of components on the one side and the development of new materials on the other. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a powerful tool for depicting the distribution of the hydrogen isotope deuterium in the microstructure of austenitic and duplex steels. The combination with imaging techniques such as electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM), delivering structural and morphological information, creates a comprehensive picture of the hydrogen/deuterium-induced effects in the materials. All the gathered data is treated with principal component analysis (PCA) and data fusion to enhance the depth of information. The mobility of hydrogen and deuterium in a steel microstructure is affected by external mechanical stress. To investigate the behaviour of deuterium in a strained microstructure, a new in situ experimental approach was developed. This gives the possibility of analysing samples in the SIMS instrument simultaneously to four-point-bending-tests. Specimens made from ASS AISI 304L were electrochemically charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and hydrogen existing in the pristine material or adsorbed from the rest gas in the analysis chamber. Nonetheless, similar diffusion, permeation and solubility data allow to draw qualitative conclusions from the experiments, which are relevant for the application addressed. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Hydrogen KW - Deuterium KW - Austenitic stainless steel KW - SIMS PY - 2018 AN - OPUS4-46029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieber, Sarah A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Image denoising of ultrasonic echo data acquired on concrete N2 - Ultrasonic echo testing has become a common method in civil engineering for the investigation of concrete structures. The detection of inhomogeneities, reinforcing elements and the geometry of the object is required for quality assurance and Inspection. This assessment depends on the quality of ultrasonic images which can be improved by using Reverse Time Migration (RTM) rather than the standard method, Synthetic Aperture Focusing Technique (SAFT). Although RTM provides a better mapping of circular objects and (dipping) reflectors, the image is corrupted by migration noise. To suppress the image noise, we have tested various filter methods in the spatial domain, frequency domain as well as in the curvelet domain on ultrasonic RTM images. We found that either a spatial edge detection filter in combination with a lowpass filter (Laplacian of Gaussian filter) or two lowpass filter with different filter parameters (Difference of Gaussian filter) removed artefacts. An additional smoothing was obtained by applying the first generation curvelet transform after downsampling the image matrix and adding Gaussian noise. The proposed filter scheme is able to suppress RTM noise and enhance the image quality such that the objective interpretation of ultrasonic images for Quality assessment of concrete specimen is simplified. T2 - 76. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Münster, Germany DA - 14.03.2016 KW - Ultrasonic echo technique KW - Reverse-time migration KW - Image Denoising KW - Curvelet Transform PY - 2016 AN - OPUS4-35839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Hutzler, C. A1 - Wilke, Olaf A1 - Vieth, B. A1 - Luch, A. T1 - Investigations on emission properties of VOCs from consumer products made of polymers N2 - There is a need for an assessment of the emission properties of volatile organic compounds (VOCs) from consumer products. A method comparison was carried out to evaluate adapted and cost-effective procedures for such items. Smaller and automated emission chambers de-picted similar kinetics compared to a 203 L standard chamber. Toy samples made of PVC (Polyvinyl chloride) emitted more VOCs compared to other tested polymeric products. The emissions from 2 selected samples were studied to allow an evaluation of the resulting room concentration and external exposure of a child. Obtained concentrations were not of concern. T2 - Conference on Indoor Air 2018 CY - Philadelphia, USA DA - 22.07.2018 KW - Emission chamber testing KW - Volatile organic compounds KW - Consumer articles PY - 2018 AN - OPUS4-45662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhmert, L. A1 - Sieg, H. A1 - Braeuning, A. A1 - Lampen, A. A1 - Thünemann, Andreas A1 - Kästner, Claudia T1 - Fluorescence labeling study of silver nanoparticles N2 - During the last years, there has been a rapid rise in the use of nanomaterials in consumer products. Especially silver nanoparticles are frequently used because of their well-known optical and antimicrobial properties. However, the toxicological studies focusing on silver nanoparticles are controversial, either claiming or denying a specific nano-efffect. To contribute to localizing nanoparticles in toxicological studies and to investigate the interaction of particles with cells, a fluorescent marker is often used to monitor their transport and possible degradation. A major problem, in this context is the issue of binding stability of a fluorescent marker which is attached to the particle. In order to overcome this problem we provide an investigation of the binding properties of fluorescence-labeled BSA to small silver nanoparticles. Therefore, we synthesized small silver nanoparticles which are stabilized by poly(acrylic acid). The particles are available as reference candidate material and were thoroughly characterized in an earlier study. The ligand was exchanged by fluorescence marked albumin (BSA-FITC). The adsorption of the ligands was monitored by dynamic light scattering (DLS). To verify that the observed effects on the hydrodynamic radius originate from the successful ligand exchange and not from agglomeration or aggregation we used small angle X-ray scattering (SAXS). The fluorescent particles were characterized by UV/Vis and fluorescence spectroscopy. Afterwards, desorption of the ligand BSA-FITC was monitored by fluorescence spectroscopy and the uptake of particles in different in vitro models was studied. The particles are spherical and show no sign of aggregation after successful ligand exchange. The fluorescence intensity is quenched significantly by the presence of the silver cores as expected, but the remaining fluorescence intensity was high enough to use these particles in biological investigations. Half-life of fluorescence labeling on the particle was 21 d in a highly concentrated solution of non-labeled BSA. Thus, a very high dilution and long incubation times are needed to remove BSA-FITC from the particles. Finally, the fluorescence-labeled silver nanoparticles were used for uptake studies in human liver and intestinal cells, showing a high uptake for HepG2 liver cells and almost no uptake in differentiated intestinal Caco-2 cells. In conclusion, we showed production of fluorescence-marked silver nanoparticles. The fluorescence marker is strongly adsorbed to the silver surface which is crucial for future investigations in biological matrices. This is necessary for a successful investigation of the toxicological potential of silver nanoparticles. T2 - NanoTox 2018 - 9th International Conference on Nanotoxicology CY - Neuss, Germany DA - 18.09.2018 KW - Silver nanoparticles KW - Fluorescence KW - Cell imaging KW - Dynamic light scattering PY - 2018 AN - OPUS4-45639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Do non-thermal effects exist? - Microwave-assisted acceleration of silver nanoparticle synthesis and particle growth N2 - Ever since increasing a reaction’s yield while shortening the reaction time is the main objective in synthesis optimization. Microwave reactors meet these demands. In literature however their usage is under discussion due to claims of the existence of non-thermal effects resulting from the microwave radiation. Especially for nano-material syntheses it is of crucial importance to be aware of influences on the reaction pathway. Therefore, we compare ultra-small silver nanoparticles with mean radii of 3 nm, synthesized via conventional and microwave heating. We employed a versatile one-pot polyol synthesis of poly(acrylic acid) (PAA) stabilized silver nanoparticles, which display superior catalytic properties. No microwave specific effects in terms of particle size distribution characteristics, as derived by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS), are revealed. Due to the microwave reactor’s characteristics of a closed system, syntheses can be carried out at temperatures beyond the solvent’s boiling point. Particle formation was accelerated by a factor of 30 by increasing the reaction temperature from 200 °C to 250 °C. The particle growth process follows a cluster coalescence mechanism. A post-synthetic incubation step at 250 °C induces a further growth of the particles while the size distribution broadens. Thus, utilization of microwave reactors enables an enormous decrease of the reaction time as well as the opportunity of tuning the particles’ size. Possibly, decomposition of the stabilizing ligand at elevated temperatures results in reduced yields. A temperature of 250 °C and a corresponding reaction time of 30 s represent a compromise between short reaction times and high yields. T2 - 5th Nano Today Conference CY - Waikoloa Village, HI, USA DA - 06.12.2017 KW - Microwave synthesis KW - Small-angle scattering KW - Silver nanoparticles PY - 2017 AN - OPUS4-43497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Highly enhanced catalytic activity of silver N2 - Silver nanoparticles are one of the most widespread consumer related nanoparticles worldwide. Since the particles show special optical and antibacterial properties they are used for a wide range of applications from biological investigations over medical applications and catalysis. Especially the outstanding question of applicable alternatives for catalysts in diverse reactions can be addressed with the design of versatile system of small silver nanoparticles. In this study we present the synthesis and application of ultra-small silver nanoparticles with a narrow size distribution (R = 3.1 nm, σ = 0.6 nm). The particles are thoroughly characterized by small angle X-ray scattering, dynamic light scattering and UV/Vis spectroscopy. As a representative test reaction the reduction of 4-nitrophenol to 4-aminophenol was chosen. The particles show a catalytic activity of (436 ± 24) L g-1 s-1, which is two orders of magnitude higher than for other silver particles in the literature. The particles surrounding shell, composed of poly(acrylic acid), provides the particles with a good accessibility for the reactants. Since the catalytic activity strongly depends on the surrounding ligand, the particles shell can also be exchanged by other ligands enabling a tuning of the catalytic activity to a desired value. This shows the high flexibility of this system which can also be applied for other catalytic reactions. T2 - 5th Nano Today Conference CY - Waikoloa Village, HI, USA DA - 06.12.2017 KW - SAXS KW - Catalysis KW - Silver nanoparticles KW - Reduction 4-nitrophenol PY - 2017 AN - OPUS4-43496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Butz, Adam A1 - Fedelich, Bernard A1 - Rehmer, Birgit T1 - Experimental and analytical investigation of notched components of a Nickel based superalloy under high temperature cyclic loading N2 - While the increase in use of renewable energy sources is a necessity in times of climate change the use of gas turbines as back-up requires them to be run in a much more flexible manner in order to compensate for side effects like sudden fluctuations of energy generation. The significant changes of stress and temperature levels in turbine blades due to start-up and shut down can cause crack initiation and growth in the blades‘ alloy. The aim of this research project is to identify a model for lifetime prediction for gas turbine components made of a Nickel base superalloy under high temperature with a Focus on stress concentration points such as cooling holes. T2 - HIDA-7 Conference on Life/Crack Assessment & Failures in Industrial Structures, UK CY - Portsmouth, UK DA - 15.05.2017 KW - LCF KW - Gas turbine KW - Service life model PY - 2017 AN - OPUS4-42274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila, Luis A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Assessing the low cycle fatigue behaviour of additively manufactured Ti-6Al-4V: Challenges and first results N2 - The understanding of process-microstructure-property-performance (PMPP) relationships in additive manufacturing (AM) of metals is highly necessary to achieve wide-spread industrial application and replace conventionally manufactured parts, especially regarding safety-relevant applications. To achieve this understanding, reliable data and knowledge regarding material’s microstructure-property relationships (e.g. the role of defects) is needed, since it represents the base for future more targeted process optimizations and more reliable calculations of performance. However, producing reliable material data and assessing the AM material behaviour is not an easy task: big challenges are e.g. the actual lack of standard testing methods for AM materials and the occasional difficulties in finding one-to-one comparable material data for the conventional counterpart. This work aims to contribute to end this lack of reliable material data and knowledge for the low cycle fatigue behaviour of the most used titanium alloy in aerospace applications (Ti-6Al-4V). For this purpose, two sets of test specimens were investigated. The first set was manufactured from cylindrical rods produced by an optimized DED-L process and the second was manufactured from a hot formed round bar. The test specimens were cyclically loaded until failure in the low-cycle-fatigue (LCF) regime. The tests were carried out according to ISO 12106 between 0.3 to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behaviour is described and compared between materials and with literature values based on cyclic deformation curves and strain-based fatigue life curves. Besides, the parameters of Manson-Coffin-Basquin relationship were calculated. The microstructures (initial and after failure) and fracture surfaces were comparative characterized. Thereby, the focus lied on understanding the role of grain morphology and defects on the failure mechanisms and fatigue lifetimes. For this latter characterization, optical microscopy (OM), scanning electron microscopy (SEM) and micro computed tomography (µCT) were used. T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ti-6Al-4V KW - Additive manufacturing KW - Low cycle fatigue KW - Micro computed tomography KW - Microstructure PY - 2020 AN - OPUS4-50893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuerlein, C. A1 - Rehmer, Birgit A1 - Finn, Monika A1 - Uhlemann, Patrick A1 - Savary, F. A1 - Lackner, F. T1 - Mechanical properties of the HL-LHC 11 Tesla Nb3Sn magnet constituent materials N2 - A test campaign was launched to determine the mechanical properties of the HL-LHC 11 T Nb₃Sn magnet components in order to accurately model the mechanical properties in Finite Element simulations that predict the stress and strain distribution in these magnets. Static and dynamic test methods have been applied for determining elastic materials behavior, and highly accurate Young’s moduli are obtained with the dynamic methods resonance and impulse excitation. These non-destructive methods also enable temperature dependent modulus measurements during in situ heat cycles. T2 - Applied Superconductivity Conference CY - Denver, USA DA - 04.09.2016 KW - Young´s modulus KW - Tensile KW - Compression KW - Temperature dependence PY - 2016 AN - OPUS4-37922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Benismail, Nizar A1 - Altmann, Korinna T1 - Interlaboratory comparisons for obtaining reliable data on microplastic detection methods N2 - Since microplastics (MPs) can be found everywhere and are becoming a problem of high concern, it is necessary to understand their occurrence and fate in the environment. However, to obtain data of high quality is very challenging, since measurement operating procedures differ from laboratory to laboratory. Currently, there are no standardized methods to analyze microplastics. One promissing possibility to adress standardization of the methodology and operating procedures are interlaboratory comparisons (ILCs). In this contribution we report the first results of an ILC on microplastic detection methods organized under the pre-stantdardisation plattform of VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods”, within the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. The ILC has gathered 84 participants all over the world representing all continents. BAM, as the project leader, produced a set of reference microplastic materials, which have been distributed to all the participants together with the measurement protocols and reporting data templates. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - ILC KW - Microplastic KW - Py-GC/MS KW - Polyethylene KW - µ-Raman KW - µ-FTIR KW - Polyethylene Terephtalate KW - TED-GC/MS PY - 2024 AN - OPUS4-60038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Drago, C. A1 - Altmann, Korinna A1 - Wiesner, Yosri T1 - Standardization Methods for the Analysis of Microplastics (10 100µm) in Food Matrix: Sample Preparation and Digestion of Milk Powder. N2 - Monitoring of microplastics in food matrices is crucial to determinate the human exposure. By direct ingestion microplastics could be released in the food during the production, through packaging and by consumer’s use. The absence of standard methods to quantify and detect different size range and type of microplastics has led to difficult and time consuming procedural steps, poor accuracy and lack of comparability. In this work, matrix characterization and laboratory experiments were used to investigate the efficiency of sample preparation in milk powder. This information is crucial to compile a standard procedure for sample preparation and digestion of common milk powder to detect different particle sizes and types of polymers. Charaterisation is done by TGA and TOC measurements. T2 - SETAC Europe 2024 CY - Sevilla, Spain DA - 05.05.2024 KW - Microplastics KW - Harmonisation in microplastics KW - Polymer 3R KW - Microplastics in milk PY - 2024 AN - OPUS4-60034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saber, Yassin A1 - Zocca, Andrea A1 - Günster, Jens T1 - Fully automated and decentralized fused filament fabrication of ceramics for remote applications N2 - Manufacturing of ceramic components in remote (i.e., geographically isolated) settings poses significant challenges where access to conventional manufacturing facilities is limited or non-existent. Fused Filament Fabrication (FFF) enables the rapid manufacturing of ceramic components with complex geometries. Parts formed by FFF require subsequent debinding and sintering to reach full density. Debinding and sintering are typically executed in separate steps with different equipment, necessitating extensive human handling which hinders process automation and may be challenging for the operator in isolated environments. This poster presents an innovative approach: the integration of all process steps into a single, fully automated system, streamlining the process and minimizing human involvement. Our system combines a dual extrusion filament printer with a porous and heat-resistant ceramic print bed. The porous print bed enables mechanical interlocking of the first printed layers, ensuring adhesion and structural integrity during FFF. Ceramic parts are printed onto thin sacrificial rafts, which are built using an interface material with the same binder as the ceramic filament. After the print is completed, the heat-resistant print bed with all parts is transferred seamlessly with a carrier system into a high-temperature furnace for debinding and sintering. During sintering the sacrificial raft is disintegrated, allowing for unconstrained sintering of the ceramic parts and easy removal of the finished parts. In conclusion, our integrated approach enables significant advancements in the fabrication of complex ceramic components in remote environments with increased efficiency and minimal human handling. T2 - yCAM 2024 CY - Tampere, Finnland DA - 06.05.2024 KW - Fused Filament Fabrication PY - 2024 AN - OPUS4-60057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Schaarschmidt, J. A1 - von Hartrott, P. A1 - Bruns, M. A1 - Birkholz, H. A1 - Waitelonis, J. A1 - Hickel, Tilmann T1 - Seamless Science with the Platform MaterialDigital (PMD): Demonstration of Semantic Data Integration as Good Practices N2 - Following the new paradigm of materials development, design, and optimization, digitalization is the main goal in materials sciences and engineering (MSE) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. The project ‘platform MaterialDigital’ (PMD) aims to bring together and support interested parties from both industrial and academic sectors in a sustainable manner in solving digitalization tasks and implementing digital solutions. Therefore, the establishment of a virtual material data space and the systematization of the handling of hierarchical, process-dependent material data are focused. Core points to be dealt with are the development of agreements on data structures and interfaces implemented in distinct software tools and to offer users specific support in their projects. Furthermore, the platform contributes to a standardized description of data processing methods in materials research. In this respect, selected MSE methods are semantically represented on a prototypical basis which are supposed to serve as best practice examples with respect to knowledge representation and the creation of knowledge graphs used for material data. Accordingly, this poster presentation illustrates demonstrators developed and deployed within the PMD project. Semantically anchored using the mid-level PMD Core Ontology (PMDco), they address data transformation leading to a novel data management which is based on semantic integrated data. The PMD data acquisition pipeline (DAP), which is fueled by traditional, diverse data formats, and a pipeline applying an electronic laboratory notebook (ELN) as data source are displayed. Additionally, the efficient combination of diverse datasets originating from different sources is demonstrated by the representation of a use case dealing with the well-known Orowan relation. T2 - 9. Dresdner Werkstoffsymposium CY - Dresden, Germany DA - 16.05.2024 KW - Semantic Data KW - Data Integration KW - Plattform MaterialDigital KW - Demonstrators KW - Electronic Lab Notebook PY - 2024 AN - OPUS4-60102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Lohrke, Heiko A1 - Lilienthal, A. J. T1 - Outdoor Gas Plume Reconstructions: A Field Study with Aerial Tomography N2 - This paper outlines significant advancements in our previously developed aerial gas tomography system, now optimized to reconstruct 2D tomographic slices of gas plumes with enhanced precision in outdoor environments. The core of our system is an aerial robot equipped with a custom-built 3-axis aerial gimbal, a Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor for CH4 measurements, a laser rangefinder, and a wide-angle camera, combined with a state-of-the-art gas tomography algorithm. In real-world experiments, we sent the aerial robot along gate-shaped flight patterns over a semi-controlled environment with a static-like gas plume, providing a welldefined ground truth for system evaluation. The reconstructed cross-sectional 2D images closely matched the known ground truth concentration, confirming the system’s high accuracy and reliability. The demonstrated system’s capabilities open doors for potential applications in environmental monitoring and industrial safety, though further testing is planned to ascertain the system’s operational boundaries fully. T2 - 20th International Symposium on Olfaction and Electronic Nose CY - Grapevine, Texas, USA DA - 12.05.2024 KW - Aerial Robot KW - TDLAS KW - Gas Tomography KW - Plume PY - 2024 AN - OPUS4-60108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Hoffmann, Kristin T1 - Lifetime Barcoding of Polystyrene Beads with Fluorescent Nanocrystals for Fluorescent Lifetime Detection in Flow Cytometry N2 - Multiplexed encoding schemes of nano- and micrometer sized polymer particles with fluorescent dyes or quantum dots (QDs) and their optical detection, are of increasing interest for applications in the life sciences, for example in flow cytometry. Almost all strategies utilizing fluorescence focus on spectrally distinguishable emission bands or colors and different intensity levels as fluorescence codes. In this work the goal is to perform multiplexing with encoding fluorophores with different fluorescence lifetimes (LTs). In comparison to the spectral multiplexing strategies this has the advantage, that the different fluorescence LT codes can be measured with the same excitation and emission wavelength, thus reducing instrumental costs. Moreover, LTs should not depend on emitter concentration. Unlike organic dyes, the LTs of which are typically <10ns, the fluorescence LTs of ternary semiconductor QDs which represent a “green” alternative to conventional Cd-containing QDs are in the range of several hundred ns, independent of oxygen concentration, and can be tuned to a certain extent by chemical composition and surface chemistry. This presents a time region that can barely be covered by other emitters that have either much shorter or longer lifetimes. In this project, different encoding strategies will be assessed, and the encoded particles will then be used for fluorescence assays for the analysis of several targets in parallel. Therefore, the encoded particles will be functionalized with different target-specific bioligands and read out with a specifically designed flow cytometer enabling time-resolved fluorescence detection. With this instrument, the particles will be discriminated by their fluorescence LTs in one detection channel while the analytes will be quantified by fluorescence labels in a second channel in the intensity domain. T2 - Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Coro, A. A1 - Marquez, R. M. A1 - Le Guevel, X. A1 - Juarez, B. H. A1 - Resch-Genger, Ute T1 - Exploring the photoluminescence of gold NCs and Ag2S NPs to boost their SWIR emission N2 - Current challenges and objectives for non-invasive optical bioimaging are deep tissue penetration, high detection sensitivity, high spatial and temporal resolution, and fast data acquisition. A promising spectral window to tackle these challenges is the short-wave infrared (SWIR) ranging from 900 nm to 1700 nm where scattering, absorption, and autofluorescence of biological components are strongly reduced compared to the visible/NIR. At present, the best performing SWIR contrast agents are based on nanomaterials containing toxic heavy-metal ions like cadmium or lead, which raises great concerns for biological applications. Promising heavy-metal free nanoscale candidates are gold nanoclusters (AuNCs) and Ag2S nanoparticles (NPs). The photoluminescence (PL) of both types of nanomaterials is very sensitive to their size, composition of their surface ligand shell, and element composition, which provides an elegant handle to fine-tune their absorption and emission features and boost thereby the size of the signals recorded in bioimaging studies. Aiming for the development of SWIR contrast agents with optimum performance, we dived deeper into the photophysical processes occurring in these nanomaterials, thereby exploring in depth how the environment, surface ligand composition, and the incorporation of transition metals influence the optical properties of AuNCs and Ag2S NPs. We observed a strong enhancement of the SWIR emission of AuNCs upon exposure to different local environments (in solution, polymer, and in the solid state). Addition of metal ions such as Zn2+ to Ag2S based NPs led to a strong PL enhancement, yielding PL quantum yields of about 10% and thus making them highly suitable for non-invasive deep imaging of vascular networks and 3D fluid flow mapping. T2 - NaNaX 10 - Nanoscience with Nanocrystals CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Quantum dots KW - Ag2S KW - Fluorescence KW - SWIR KW - Gold nanocluster KW - Nanomaterial KW - bioimaging PY - 2023 AN - OPUS4-58104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wegner, Karl David A1 - Coro, A. A1 - Le Guevel, X. A1 - Juarez, B. H. A1 - Resch-Genger, Ute T1 - SWIR luminescent nanomaterials – key chemical parameters for bright probes for in vivo bioimaging N2 - A current challenge for studying physio-pathological phenomena and diseaserelated processes in living organisms with non-invasive optical bioimaging is the development of bright optical reporters that enable deep tissue penetration, a high detection sensitivity, and a high spatial and temporal resolution. The focus of this project are nanomaterials, which absorb and emit in the shortwave infrared (SWIR) between ~900–2500 nm where scattering, absorption, and autofluorescence of the tissue are strongly reduced compared to the visible and NIR. T2 - QD2024 - 12th International Conference on Quantum Dots CY - Munich, Germany DA - 18.03.2024 KW - Quantum dots KW - Advanced nanomaterials KW - Fluorescence KW - Quality assurance KW - Gold nanocluster KW - Shortwave infrared KW - Spectroscopy KW - Bioimaging PY - 2024 AN - OPUS4-59783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwettmann, K. A1 - Stephan, D. A1 - Nytus, N. A1 - Radenberg, M. A1 - Weigel, Sandra T1 - Post carbon road - The endless cycle of bitumen reuse N2 - In Germany, the reuse of asphalt has a long tradition. Since the 1980s, the reclaimed asphalt has been recycled achieving a reuse rate of around 90% and thus a very high value in the last years. In the future, instead of the amount, the quality of the reclaimed asphalt will be more important because the recycled asphalt will be reused again and again. Thus, these asphalt mixes are in the second or even third cycle of reuse. Concerning this situation, the question arises if asphalt can be reused several times without any loss in quality. An important factor affecting the asphalt quality is the binder bitumen. During the production, construction and service life, the ageing of this binder occurs causing a hardening of the bitumen. To compensate this hardening, additives for the reclaimed asphalt in terms of rejuvenation agents (rejuvenators) gain in importance. With these rejuvenators, the physical properties of bitumen can be modified e.g. the hardness and the stiffness reduced. However, the mechanism of the rejuvenation agents and the effects of the bitumen chemistry are largely unknown because the composition of the products varies very strongly. But with growing knowledge about these mechanisms and effects of the rejuvenation agents, the chemical composition and thus the physical and ageing behavior of bitumen can be targeted modified by the use of suitable rejuvenators. In this work, the actual results of the project Postcarbone road should be presented including investigations about the chemical and physical mechanisms as well as the efficiency of different rejuvenators. Further, a model for the cyclic reuse of bitumen should be developed. Based on this model, the choice of a suitable rejuvenation agent for the considered bitumen or rather asphalt should be possible. The project Postcarbone road (392670763) is funded by the German Research Foundation (DFG). T2 - 7th Eurasphalt and Eurobitume Congress CY - Online meeting DA - 15.06.2021 KW - Bitumen KW - Multiple ageing and rejuvenation KW - Conventional testing KW - DSR KW - BBR KW - FTIR KW - Asphaltene content KW - Column chromatography PY - 2021 AN - OPUS4-53489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kathan, Michael A1 - Kovanicek, Petr A1 - Jurissek, Christoph A1 - Senf, Antti A1 - Dallmann, Andre A1 - Thünemann, Andreas A1 - Hecht, Stefan T1 - Photocontrolling imine exchange kinetics to modulate inherent characteristics of self-healing polysiloxane networks N2 - Materials that respond to the environment by changing their properties are critical for developing autonomously adaptive systems. However, to reversibly influence a material's inherent characteristics, such as its ability to self-heal, from distance without continuously expending energy, remains a challenging task. Herein, we report on the modul at ion of imine exchange kinetics by light, manifested in a remote controllable dynamic covalent polymer network. Simple mixing of a commercially available amino-functionalized polysiloxane with small amounts of a photoswitchable diarylethene cross-linker, carrying two aldehyde groups, yields a rubbery material. Its viscoelastic and self-healing properties can be reversibly tuned with everyday light sources, such as sunlight. Our two-component system offers the unique advantage that self-healing takes place continuously without any additives at ambient conditions and is neither dependent on continuous illumination nor does it require recent damage. Overall, our approach allows for the local amplification of intrinsic material properties in a permanent yet reversible fashion. The availability of the inexpensive sta1ting materials on a multi-gram scale, the easy synthesis of the polymer network, and its convenient handling paired with high versatility make our Approach highly applicable to create custom-tailored adaptive materials. T2 - POLYDAYS 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - Self-healing KW - Polymer PY - 2016 AN - OPUS4-37623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fuhrmann, A. A1 - Göstl, R. A1 - Wendt, R. A1 - Kötteritzsch, J. A1 - Hager, M. D. A1 - Schubert, U. S. A1 - Brademann-Jock, Kerstin A1 - Thünemann, Andreas A1 - Nöchel, U. A1 - Behl, M. A1 - Hecht, S. T1 - Conditional repair by locally switching the thermal healing ability of dynamic covalent polymers ON and OFF with light N2 - Healable materials are able to repair inflicted damages, herin often applied: dynamic covalent polymer networks. We have shown in this study that light of different colors shift the Diels-Alder and retro Diels-Alder crosslinking and decrosslinking equilibrium. This effect was utilized for self-healing of a polymer film. Small-angle X-ray scattering was used to quantifiy the polymeric mesh size on a nanoscale. T2 - Polydays 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - Polymer KW - Small-angle X-ray scattering KW - SAXS KW - Self-healing PY - 2016 AN - OPUS4-37570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Characterization of silver nanoparticles in cell culture medium containing fetal bovine serum N2 - Nanoparticles are being increasingly used in consumer products worldwide, and their toxicological effects are currently being intensely debated. In vitro tests play a significant role in nanoparticle risk assessment, but reliable particle characterization in the cell culture medium with added fetal bovine serum (CCM) used in these tests is not available. As a step toward filling this gap, we report on silver ion release by silver nanoparticles, and changes in the particle radii and in their protein corona when incubated in CCM. Particles of a certified reference material (CRM), p1, and particles of a commercial silver nanoparticle material, p2, were investigated. The colloidal stability of p1 is provided by the surfactants polyethylene glycole-25 glyceryl trioleate and polyethylene glycole-20 sorbitan monolaurate, whereas p2 is stabilized by polyvinylpyrrolidone (PVP). Dialysis of p1 and p2 reveal that their silver ion release rates in CCM are much larger than in water. Particle characterization was performed with asymmetrical flow field-flow fractionation (FFF), small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and electron microscopy. p1 and p2 have similar hydrodynamic radii of 15 nm and 16 nm, respectively. The silver core radii are 9.2 and 10.2 nm. Gel electrophoresis and subsequent peptide identification reveal that albumin is the main corona component of p1 and p2 after incubation in CCM, which consists of Dulbeccos Modified Eagle Medium with 10% fetal bovine serum added. T2 - 6th International Colloids Conference CY - Berlin, Germany DA - 19.06.2016 KW - SAXS KW - Nanoparticle KW - Silver KW - Albumin PY - 2016 AN - OPUS4-36639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Fähler, Sebastian A1 - Fähler, Sebastian T1 - Thermomagnetic generators with magnetocaloric materials for harvesting low grade waste heat N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. Here we give an overview on our research, covering both materials and systems. We demonstrate that guiding the magnetic flux with an appropriate topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude. Through a combination of experiments and simulations, we show that a pretzel-like topology results in a sign reversal of the magnetic flux. This avoids the drawbacks of previous designs, namely, magnetic stray fields, hysteresis and complex geometries of the thermomagnetic material. Though magnetocaloric materials had been the first choice also for thermomagnetic generators, they require some different properties, which we illustrate with Ashby plots for materials selection. Experimentally we compare La-Fe-Co-Si and Gd plates in the same thermomagnetic generator. Furthermore, we discuss corrosion and deterioration under cyclic use is a severe problem occurring during operation. To amend this, composite plates using polymer as a matrix have been suggested previously. T2 - Dresden Days of Magnetocalorics CY - Dresden, Germany DA - 13.11.2023 KW - Thermomagnetic material KW - Waste heat recovery KW - Generator PY - 2023 AN - OPUS4-58865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Effect of heat treatment on residual stress in additively manufactured AlSi10Mg N2 - Al-Si alloys produced by Laser Powder Bed Fusion (PBFLB) allow the fabrication of lightweight free-shape components. Due to the extremely heterogeneous cooling and heating, PBF-LB induces high magnitude residual stress (RS) and a fine Si microstructure. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their evolution in as-built state (AB) and after post-process heat treatments (HT). RS in single edge notch bending (SENB) subjected to different HT are investigated (HT1: 1h at 265°C and HT2: 2h at 300°C). T2 - ESRF User Meeting 2023 CY - Grenoble, France DA - 07.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress PY - 2023 AN - OPUS4-56982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fink, Friedrich A1 - Falkenhagen, Jana A1 - Emmerling, Franziska T1 - Mechanochemical valorisation of kraft-lignin N2 - As one of nature's largest carbon sources with an annual production of around 20 billion tonnes, lignin is the third most abundant biopolymer on the planet. It becomes available as technical lignin, which is produced as a by-product in the pulp and paper industry and in smaller quantities in second generation biofuel refineries. Current estimates suggest that less than 10% of all technical lignin is reused. The high polydispersity, complex heterogeneous structure and uncertain reactivity are the major limiting factors for further processing. The most common applications for various technical lignins without extensive modifications are for example: Surface active substances, additives in bitumen, cement and animal feed. One way to make lignin usable is to break the structure into oligomer units and thus reduce the polydispersity and average molar mass. In addition, it is advantageous to introduce new functionalities such as hydroxyl or carbonyl groups when splitting the high-molecular-weight (HMW) fractions, or to convert existing functionalities. In this study, a mechanochemical method is presented that can degrade and modify technical kraft lignin by means of sodium percarbonate (SPC). T2 - 10th Intern. Symp. on the Separation and Characterisation of Natural and Synthetic Macromolecules (SCM-10) CY - Amsterdam, Netherlands DA - 01.02.2023 KW - Technical Lignin KW - Mechanochemical oxidation PY - 2023 AN - OPUS4-57001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matiushkina, Anna A1 - Litvinov, I. A1 - Bazhenova, A. A1 - Belyaeva, T. A1 - Dubavik, A. A1 - Veniaminov, A. A1 - Maslov, V. A1 - Kornilova, E. A1 - Orlova, A. A1 - Tavernaro, Isabella A1 - Andresen, Elina A1 - Prinz, Carsten A1 - Resch-Genger, Ute T1 - Synthesis and physical properties studies of bifunctional nanocomposites N2 - At present, the field of research on nanostructures is actively developing, which is due to their unique physico-chemical properties compared to bulk materials. Many research activities are focused on obtaining nanocomposites, which combine various types of nanostructures with different properties and function. For example, the development of magneto-luminescent nanocomposites makes it possible to use their luminescence for optical imaging, and their magnetic properties for magnetic targeted delivery and as agents of hyperthermia and magnetic resonance imaging. My master studies as part of the project Goszadanie 2019-1080 at ITMO were focused on the investigation of nanocomposites, consisting of semiconductor quantum dots (QDs) as luminescent component and superparamagnetic iron oxide nanoparticles (SPIONs) as magnetic one, in solution and during their incubation with HeLa cells. The spectrally resolved analysis of the QD photoluminescence (PL) kinetics of the free QDs and the QDs incorporated in these nanocomposites undergoing energy transfer processes allowed for (1) understanding the reasons for the quenching of QD luminescence in cells, (2) evaluating the average distance between the QDs and, based on this, concluding the degree of QD aggregation in cells, and (3) drawing conclusions about the QD-quencher composites integrity in cells. Overall, the analysis of the PL kinetics confirmed that QDs and SPIONs remain bound in the obtained nanocomposites during incubation with cells. To ensure the successful advancement of nanomaterials in biomedicine and the transition from their laboratory preparation and studies to their use in different applications and in industry, it is crucial to develop reliable measurement methods and reference materials candidates for the characterization of functional nanomaterials and assessing the quality of the obtained nanostructures. My recently started project at BAM, which is part of the EU metrology project MeTrINo, will be devoted to this topic. There we will focus on the development of methodologies for the synthesis and characterization of iron oxide nanoparticles, already used in biomedicine, and multi-element lanthanide-based nanoparticles with attractive upconversion luminescence, as reference materials with high monodispersity and reproducibility. Also, these nanoparticles will be functionalized with organic dyes for optical imaging and, probably, the study of the energy transfer phenomena. T2 - Bad Honnef Summer School CY - Bad Honnef, Germany DA - 30.07.2023 KW - Quantum dots KW - Iron oxide nanoparticles KW - Upconversion nanoparticles PY - 2023 AN - OPUS4-58075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Osipova, Viktoriia A1 - Tavernaro, Isabella A1 - Prinz, Carsten A1 - Langhammer, N. A1 - Heinze, K. A1 - Resch-Genger, Ute T1 - Incorporation of near-infrared light emitting chromium (III) complexes into the core and shell of silica nanoparticles and optimisation of their optical properties N2 - In recent years, chromium (III) complexes have received a lot of attention as novel near-infrared (NIR) emitters. This interest was triggered by the report on the first molecular ruby Cr(ddpd)2(BF4)3 with a high photoluminescence quantum yield of 13.7% of its near infrared (NIR) emission band and a long luminescence lifetime of 1.122 ms at room temperature. Meanwhile, the influence of triplet oxygen, temperature, and pressure on the optical properties of different molecular rubies have been assessed. These features make these molecular rubies promising candidates for multi-analyte optical sensing applications and the generation of singlet oxygen for photocatalysis and photodynamic therapy. However, in an oxygen-containing environment, the photoluminescence quantum yields and luminescence lifetimes of these chromium(III) complexes show only very small values. This hampers their application as NIR luminescence labels. This application, that cannot be tackled by conventional deoxygenating approaches, requires suitable strategies to protect the luminescence of the chromium(III) complexes from oxygen quenching. Typical approaches to reduce the oxygen sensitivity of long-lived luminophores include the encapsulation into an oxygen-shielding matrix or less commonly employed, by tuning the bulkiness of the ligands for oxygen-sensitive coordination compounds. An elegant approach to reduce the undesired luminescence quenching by triplet oxygen explored by us presents the incorporation of these chromium(III) complexes into amorphous, non-porous silica nanoparticles, that can be simply surface functionalized, e.g., with targeting ligands and/or other sensor molecules. This can enable the use of such chromium(III) complexes as reporters for bioanalytical assays and bioimaging without the need to introduce reactive groups into the ligands and can pave the road to lifetime tuning. In this work, as first proof-of-concept experiments, a set of chromium (III) complexes constituting of different ligands and counter anions, were embedded into the core of silica nanoparticles. As an alternative synthesis strategy, selected complexes were incorporated into a silica shell formed around the core of self-made silica nanoparticles. Subsequently, the optical properties of the resulting luminescent silica nanoparticles were spectroscopically assessed by steady state and time-resolved luminescence spectroscopy. First results of time-resolved luminescence measurements of the Cr(ddpd)2(PF6)3 complex incorporated into 25nm large silica nanoparticles dispersed in aerated water in comparison to the decay kinetics obtained for this complex in acetonitrile in air showed an increase in lifetime from 46 µs to 1147 µs. This confirming our design concept of nanoscale NIR emissive Cr(III) reporters. T2 - Bad Honnef summer school CY - Bad Honnef, Germany DA - 30.07.2023 KW - Chromium (III) complexes KW - Silica Nanoparticles KW - Luminescence lifetime measurments PY - 2023 AN - OPUS4-58076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Hübler, Daniela A1 - Börner, Andreas A1 - Kannengießer, Thomas T1 - Wear behavior of innovative niobium carbide cutting tools in ultrasonic-assisted finishing milling N2 - The resources of niobium exceed the ones of tungsten by an order of magnitude. With 92%, Brazil is today the main global producer of niobium. Hence, niobium carbides (NbC) are a sustainable and economic alternative to conventionally used cutting materials, especially tungsten carbides (WC). Moreover, NbC can be used in Ni alloy matrix and thus offer significant advantages by substituting WC in Co matrix as cutting materials in terms of health risks and raw material price and supply risk. Based on recent studies which found an increased performance of NbC compared to WC cutting tools in machining higher strength steels, the composition NbC12Ni4Mo4VC was chosen for finish machining of a high-strength steel S960QL in this study. The experiments were carried out on an ultrasonic-assisted 5-axis milling machine using NbC tools specially made to benchmark them with commercially available coated WC cutting inserts. In addition, the influence of a coating system for the NbC inserts is tested and evaluated for its performance in the cutting process. Tool wear and cutting force analyses are implied to identify optimal parameter combinations as well as tool properties for the novel NbC tool. Together with the oscillation of ultrasonic-assisted milling, the loads on the component surface and the tool can be reduced and the wear behavior of the novel NbC tool can be refined. These milling tests are accompanied by standardized wear tests, i.e., pin-on-disc, between the aforementioned material combinations, and the results are correlated with each other. Finally, the behavior when using hard-to-cut materials such as Ni alloys, or innovative materials such as iron aluminide is also being tested, as these are constantly in the focus of machining optimization. With this strategy, comprehensive knowledge is achievable for future efficient application of NbC for milling tools, which have already been researched for decades using WC. T2 - 24th International Conference on Wear of Materials CY - Banff, Canada DA - 16.04.2023 KW - Cutting tool KW - Niobium carbide KW - Tool wear KW - Ultrasonic-assisted milling PY - 2023 AN - OPUS4-59258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kannengießer, Thomas T1 - Minimization of tool wear in milling of iron aluminides using ultrasonic-assisted process N2 - Presentation of key results from the ZIM cooperation project "TEWUFEAL" on tool development for ultrasonic-assisted milling of iron aluminide alloys cast in gravity die casting. T2 - 24th International Conference on Wear of Materials CY - Banff, Canada DA - 16.04.2023 KW - Iron aluminides KW - Ultrasonic-assisted milling KW - Surface integrity KW - Tool wear PY - 2023 AN - OPUS4-59259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meinel, Dietmar A1 - Ulbricht, Alexander A1 - Gardei, André T1 - Classic Materials Testing in the Light of CT N2 - Currently, mandatory requirements and recommendations for the detection of irregularities in laser beam welded joints are based on classic micrographs as set out in the standard ISO 13919-1:2019. Compared to classic micrographs, computed tomography enables a non-destructive, three-dimensional and material-independent mode of operation, which delivers much more profound results. Even in building material testing, methods with limited informative value can be checked and supplemented by CT examinations. T2 - 13th International Conference on Industrial Computed Tomography (iCT2024) CY - Wels, Austria DA - 06.02.2024 KW - Computed Tomography KW - Additive Manufacturing KW - Machine-Learning Segmentation KW - Air Void System PY - 2024 AN - OPUS4-59568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krenzer, Julius A1 - Mueller, Thomas A1 - El Abbassi, Abdelouahad A1 - Resch-Genger, Ute A1 - Petrov, Eugene T1 - Aroyl-S,N-ketene acetal based bichromophores exhibiting energy transfer and aggregation induced (dual) emission N2 - A series of aroyl-S,N-ketene acetal based bichromophores is readily synthesized by Buchwald-Hartwig amination and Ullmann reaction in moderate to good yields. The aminated aroyl-S,N-ketene acetals are emissive in the solid state and in the aggregate, but not in solution, thus, they are AIEgens (aggregation induced emission chromogens). Aggregation is induced by fractional alternation of the solvent mixture, here by increasing the water fraction of ethanol/water mixtures. For most derivatives, the emission upon induced aggregation stems solely from the aroyl-S,N-ketene acetal chromophore, regardless whether excitation occurs at the absorption maximum of the triarylamine or the aroyl-S,N-ketene acetal. Therefore, a pronounced energy transfer from the triarylamine donor to the aroyl-S,N-ketene acetal acceptor can be inferred. The color of the emission can be controlled by choosing the para-aroyl substituent. A partial energy transfer could also be observed for some bichromophores, leading to aggregation-induced dual emission (AIDE). In addition, four examples of aminated diaroyl-S,N-ketene acetals were added to the compound library. The electron-withdrawing properties of the additional aroyl group provide a bathochromic shift of the emission band of the aroyl-S,N-ketene acetal. These bichromophores also show AIDE and in one case even aggregation-induced white light emission as a result of additive color mixing. T2 - Beilstein Symposium on pi-Conjugated Molecules and Materials CY - Limburg, Germany DA - 07.11.2023 KW - aggregation-induced dual emission (AIDE) PY - 2023 AN - OPUS4-59006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Casali, Lucia A1 - Emmerling, Franziska T1 - Use of the solvent-free mechanochemical method for a sustainable preparation of pharmaceuticals N2 - With the growing interest in environmental issues on the part of governments and institutions, pharmaceutical industries are asked to reduce their environmental footprint. Given the major impact related to the use of solvents, the development of methodologies less solvent demanding is nowadays even more urgent. In light of that, mechanochemistry would be a suitable solvent-free technology since it promotes the activation of the chemical reactions between (generally) solid materials via inputs of mechanical energy. Since such reactions may occur outside the kinetic and thermodynamic rules of conventional solution chemistry, the main limit of mechanochemistry is the poor mechanistic understanding of the solid-state transformations involved, which is still hindering a widespread use of the method, as well a scale-up to the industrial level. However, the development of methods for real-time monitoring of the mechanochemical reactions enables obtaining (in)accessible information on reaction intermediates, new products, or reaction time, thus getting closer to a better understanding of the mechanistic behaviour. With the rules of this chemistry becoming increasingly clear, the new reaction pathways of mechanochemistry wouldn’t represent a limit anymore, but an asset, that may lead to lot of opportunities for the pharmaceutical industry. T2 - Post Doc Day Berlin CY - Berlin, Germany DA - 02.11.2023 KW - Mechanochemistry KW - Sustainability KW - Pharmaceuticals PY - 2023 AN - OPUS4-59010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -