TY - JOUR A1 - Selleng, Christian A1 - Meng, Birgit A1 - Gröger, K. A1 - Fontana, Patrick T1 - Einflussgrößen auf die Wirksamkeit einer Wärmebehandlung von Ultrahochfestem Beton (UHFB) T1 - Influencing factors for the effectivity of heat treatment of ultrahigh performance concrete (UHPC) N2 - Mittels Wärmebehandlung lassen sich die hervorragenden Eigenschaften von UHFB nochmals verbessern. Die für eine optimale Umsetzung relevanten Randbedingungen werden aktuell in der Fachwelt diskutiert. In dieser Veröffentlichung werden die Ergebnisse eines Forschungsprojekts vorgestellt, das die Wirkung verschiedener Einflussgrößen bei der Wärmebehandlung auf die Eigenschaften von UHFB zum Thema hatte. Dabei wurden die Art des Schutzes gegen das Austrocknen, die Vorlagerungszeit und die Haltezeit variiert. Um die zugrunde liegenden Prozesse zu verstehen, wurde der Phasenbestand mittels Röntgendiffraktometrie untersucht. Die höchsten Druckfestigkeiten des UHFB ließen sich bei einer Wärmebehandlung mit Wasserlagerung erzielen, da hierbei eine weitere Hydratation begünstigt wird. Vergleichsweise niedriger waren die Steigerungen bei einer Behandlung mit Schutz vor Austrocknung, während eine ungeschützte Behandlung zu deutlich geringeren Festigkeiten führte. Die Vorlagerungszeit beträgt im Idealfall einige Tage, um die Ausbildung eines offenbar günstigen Ausgangsgefüges sicherzustellen. Die Haltezeit sollte möglichst ausgedehnt sein, weil die Hydratation entsprechend lange gefördert wird. Im oberflächennahen Bereich war unter bestimmten Bedingungen eine Zonierung zu beobachten, deren Ursachen und Folgen, insbesondere in Bezug auf die Dauerhaftigkeit, weitere Forschung erfordern. KW - Ultra-Hochleistungsbeton KW - Wärmebehandlung KW - Behandlungsparameter KW - Vorlagerungszeit KW - Haltezeit KW - Festigkeitssteigerung KW - Zonierung KW - Ettringit PY - 2017 DO - https://doi.org/10.1002/best.201600059 SN - 0005-9900 VL - 112 IS - 1 SP - 12 EP - 21 PB - Ernst & Sohn AN - OPUS4-39171 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiedmann, A. A1 - Weise, Frank A1 - Kotan, E. A1 - Müller, H. S. A1 - Meng, Birgit T1 - Effects of fatigue loading and alkali-silica reaction on the mechanical behaviour of pavement concrete N2 - The primary aim of this paper is to analyze the impact of mechanical pre-damage and alkali–silica reaction (ASR) on the fracture mechanical properties of pavement concrete. For this purpose, a four point bending test was applied to large format beams to produce a defined level of cyclic pre-damage. The fatigue-induced concrete degradation process was simultaneously recorded using a testing procedure specifically developed for the purpose. In addition, fatigue-induced cracks on extracted drilling cores were spatially visualized and quantified using micro X-ray 3D-computed tomography (3D-CT). The storage of the small-format test specimens, with and without cyclic pre-damage, in an ASR-conducive environment showed that pre-damage leads to an increase in ASR damage processes. Subsequent structural mechanical investigations on small format specimens with and without pre-damage show that fatigue loading and ASR significantly influence fracture mechanical parameters of the concrete. KW - Acoustic emissions analysis KW - Alkali-silica reaction KW - Concrete pavement KW - Fatigue loading KW - Fracture energy KW - Monitoring of damage KW - Tensile strength KW - Ultrasonic velocity PY - 2017 DO - https://doi.org/10.1002/suco.201600179 SN - 1751-7648 SN - 1464-4177 VL - 18 IS - 4 SP - 539 EP - 549 PB - Ernst & Sohn AN - OPUS4-41007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Przondziono, R. A1 - Timothy, J. J. A1 - Weise, Frank A1 - Krütt, Enno A1 - Breitenbücher, R. A1 - Meschke, G. A1 - Hofmann, M. T1 - Degradation in concrete structures due to cyclic loading and its effect on transport processes - Experiments and modeling N2 - According to the objectives of the research group 1498, this paper deals with degradation effects in concrete structures that are caused by cyclic flexural loading. The goal is to determine their influence on the fluid transport processes within the material on the basis of experimental results and numerical simulations. The overall question was, to which extent the ingress of externally supplied alkalis and subsequently an alkali-silica reaction are affected by such modifications in the microstructure. Degradation in the concrete microstructure is characterized by ultrasonic wave measurements as well as by microscopic crack analysis. Furthermore, experiments on the penetration behavior of water into the investigated materials were performed. The penetration behavior into predamaged concrete microstructures was examined by the classical Karsten tube experiment, nuclear magnetic resonance method, and time domain reflectometry techniques. In order to create an appropriate model of the material's degradation on the water transport, the Darcy law was applied to describe the flow in partially saturated concrete. Material degradation is taken into account by an effective permeability that is dependent on the state of degradation. This effective permeability is obtained by the micromechanical homogenisation of the flow in an Representative Elementary Volume (REV) with distributed ellipsoidal microcracks embedded in a porous medium. The data gained in the microscopic crack analysis is used as input for the micromechanical model. Finite element simulations for unsaturated flow using the micromechanical model were compared with the experimental results showing good qualitative and quantitative agreement. KW - Alkali ingress KW - Alkali-silica reaction KW - Computational model for unsaturated flow KW - Cyclic loading KW - Degradation KW - Micromechanics model KW - Transport processes PY - 2017 DO - https://doi.org/10.1002/suco.201600180 SN - 1751-7648 SN - 1464-4177 VL - 18 IS - 4 SP - 519 EP - 527 PB - Ernst & Sohn AN - OPUS4-41008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Philipp A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Ziegert, C. T1 - Development of partial safety factors for earth block masonry N2 - The main aim of the research was the development of a first valid database for material parameters of earth block masonry (EBM) with particular regard to statistical characteristics. A solid database is needed for the determination of the materials partial safety factor. Therefore, compressive strength tests were carried out with two types of earth blocks and two types of prefabricated earth mortar. The evaluation has shown that the mean variation of the compressive strength was remarkably less than expected, which indicates high quality standards of the components earth block and mortar with regard to industrial production. Using the reliability method, a partial safety factor for EBM subjected to compression was determined on the basis of these test results. The findings have shown that a common calculation method for EBM based on partial safety factors following the valid masonry construction standard is feasible. KW - Partial safety factor KW - Earth block masonry (EBM) KW - Reliability KW - Compressive strength PY - 2017 DO - https://doi.org/10.1617/s11527-016-0902-9 SN - 1871-6873 SN - 1359-5997 VL - 50 IS - 1 SP - 1 EP - 14 PB - Springer AN - OPUS4-38937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Moeck, P. A1 - Volz, K. A1 - Neumann, W. T1 - Orientation relationships of Mn0.75Ga0.25As crystallites on and within GaAs determined by scanning nano beam electron diffraction N2 - Mn0.75Ga0.25As crystallites, partially embedded on and fully embedded within a single crystalline matrix of GaAs formed during metal organic vapor phase epitaxy (MOVPE) of Mn-rich (Mn,Ga)As on (001) oriented GaAs wafers. Phase and orientation analysis of these crystallites were performed with scanning nano beam electron diffraction (SNBED). The investigation of plan-view specimens using a liquid nitrogen cooling stage enabled the phase and orientation analysis of partially embedded ferromagnetic a-phase particles. In all specimens the following two orientation relationships (O) between the a-phase particles and the GaAs matrix were determined: O1: [1-2.0] Mn0.75Ga0.25As || [110] GaAs and [10.2] Mn0.75Ga0.25As || [-110] GaAs O2: [10.2] Mn0.75Ga0.25As || [110] GaAs and [1-2.0] Mn0.75Ga0.25As || [-110] GaAs. The study of cross-sectional specimens enabled the analysis of fully embedded crystallites. It could be unambiguously detected that a fully embedded crystallite has the structure of the atomically ordered monoclinic β' phase. The β' phase crystallite consists of two domains which are related in twin positions to each other. The orientation relations of the different particles are illustrated by color coded stereographic projections. KW - (Mn,Ga)As crystallites KW - Scanning nano beam electron diffraction KW - Crystal phase determination KW - Orientation mapping KW - STEM/TEM imaging PY - 2017 DO - https://doi.org/10.1002/crat.201600261 SN - 1521-4079 SN - 0232-1300 VL - 52 IS - 1, Special Issue: Anniversary Issue: 50 Years of Crystal Research & Technology SP - 138 EP - 145 PB - Wiley AN - OPUS4-38939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weltschev, Margit A1 - Schwarzer, Stefanie T1 - Vergleich der Spannungsrissbeständigkeit von Polyethylen und Polyethylenterephthalat als Werkstoffe für Verpackungen zum Transport von Gefahrgütern T1 - Comparison of the environmental stress cracking behavior of polyethylene and polyethylene terephthalate as materials for dangerous goods packagings N2 - Seitens der Industrie besteht großes Interesse, Polyethylenterephthalat (PET) als Werkstoff für Verpackungen zum Transport von Gefahrgütern einzusetzen, da aufgrund der hohen Fes-tigkeit und Steifigkeit von PET die Wanddicken und somit die Kosten der Verpackungen reduziert werden können. Die Prüfung der Spannungsrissbeständigkeit von Polyethylenformstoffen als Werkstoffe von Verpackungen erfolgt mit Labormethoden unter Verwendung einer Standardflüssigkeit als Prüfmedium für die Spannungsrisse auslösende Wirkung auf Polyethylen (PE), wodurch Zeit und Kosten der Prüfungen reduziert werden. Ziel dieser Arbeit war es, eine Laborprüfmethode zum Vergleich der Spannungsrissbeständigkeit von PE und PET auf ihre Anwendbarkeit zu prüfen, wie z.B. den Full Notch Creep Test (FNCT). Es wurde untersucht, ob die Prüfkörper aus PE und PET mit umlaufender Kerbe in dieser durch die chemische Industrie entwickelten und von der BAM konzipierten Apparatur auf der Basis des FNCT zu messbaren Ergebnissen unter Einfluss eines Ölsäureamidethoxylates als Netzmittel bei 50 °C führen. Die Testergebnisse bestätigten die Eignung des Prüfverfahrens für die acht eingesetzten Formstoffe aus PE. Dieses Prüfverfahren konnte nicht für PET angewandt werden, da die Prüfkörper aufgrund der hohen Festigkeit und Steifigkeit des PET beim Kerbvorgang zerbrachen. Die gleiche Aussage konnte für den Nachweis der der Spannungsrissbeständigkeit von Verpackungen, der in der BAM Gefahrgutregel BAM-GGR 015 beschrieben wird, getroffen werden. Die einzige Möglichkeit zum Nachweis der Spannungsrissbeständigkeit von PET besteht in der Durchführung von Stapeldruckprüfungen. N2 - The chemical industry has expressed great interest in using polyethylene terephthalate (PET) as material for packagings for the transport of dangerous goods. Due to the high strength and stiffness of PET, the wall thickness and the costs of packagings can be reduced. For packaging made of polyethylene (PE), tests to prove the stress cracking resistance used laboratory methods with a standard liquid, simulating the stress cracking effect on PE. These tests reduce time and costs. The aim of this work was to find a laboratory method to compare the stress cracking resistance of PE and PET, such as the full notch creep test (FNCT). It was investigated whether testing specimens made of PE and PET with a full coplanar notch around the middle of the specimens show weakening after the impact of a tensile force in solution of an oleic amide ethoxylate at 50 degrees C in a test device on the basis of the FNCT, which was developed by the chemical industry and designed by BAM. The test results confirmed the suitability of the method for eight PE grades. This method could not be used for PET because the specimens broke during notching due to the high stiffness and strength. The same statement applies for the proof of stress cracking resistance of PE packagings according to "Dangerous Goods Rule BAM-GGR 015" defined by BAM. In conclusion, the only way to provide information about the stress cracking resistance of PET is to perform stacking tests. KW - Gefahrgutverpackung KW - Spannungsrissbeständigkeit KW - Polyethylen KW - Polyethylenterephthalat KW - FNCT KW - Stapeldruckprüfung PY - 2017 DO - https://doi.org/10.3139/120.110966 SN - 0025-5300 VL - 59 IS - 1 SP - 29 EP - 34 PB - Carl Hanser Verlag GmbH & Co. KG CY - München AN - OPUS4-38926 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linhares, F.N. A1 - Kersch, M. A1 - Niebergall, Ute A1 - Leite, M.Ch.A.M. A1 - Altstädt, V. A1 - Furtado, C.R.G. T1 - Effect of different sulphur-based crosslink networks on the nitrile rubber resistance to biodiesel N2 - Biodiesel possesses some comparable physical properties to petroleum diesel in addition to its improved environmental benefits. Nonetheless, both fuels differ greatly with respect to their chemical compositions. Therefore, the compatibility of the materials, which are commonly employed in contact with diesel, must also be assured for biodiesel. This paper assessed the influence of sulphur-based curing systems on the resistance of nitrile rubber to soybean biodiesel. Formulations were prepared using highacrylonitrile-content nitrile rubber by employing a two-level experimental design. The amounts of two different accelerators and sulphur were varied to achieve different types of vulcanisation systems. Thermal analyses, mechanical tests and microscopy analyses were conducted to evaluate the behaviour of the material after contact with biodiesel. The results showed that the choice of the accelerator played an important role on the resistance of the rubber to the biofuel, and crosslink density was not a key factor with respect to the resistance. KW - Soyean oil KW - Nitrile rubber KW - Compatibility KW - Vulcanisation system KW - Biodiesel KW - Resistance PY - 2017 DO - https://doi.org/10.1016/j.fuel.2016.11.060 SN - 0016-2361 SN - 1873-7153 VL - 191 SP - 130 EP - 139 AN - OPUS4-39006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Miccoli, Lorenzo A1 - Gerrard, C. A1 - Perrone, C. A1 - Gardei, André A1 - Ziegert, C. T1 - A collaborative engineering and archaeology project to investigate decay in historic rammed earth structures: The case of the Medieval preceptory in Ambel N2 - This study assesses the structural vulnerability of part of a later medieval earthen building at Ambel (near Zaragoza, Spain), once a preceptory or monastic house belonging to the Military Orders. An inspection of its morphology and materials coupled with the results of an extensive campaign of static monitoring reveals marked structural inhomogeneities, the product of more than a thousand years of construction, failure, and repair from the 10th century to the present day. Building materials are inappropriately juxtaposed, there are discontinuities between construction phases and fundamental concerns remain over the long-term stability of the structure. The current condition of the structure is mainly influenced by structural discontinuities introduced at the time of construction, the unintended consequences of repair and modification and the material decay that has affected the base of the rammed earth walls. The overall findings of the static monitoring show that there is no related damage, variations in crack widths are related to the building seasonal cycle. While static analysis is an essential prerequisite before a suitable maintenance program can be fully defined, this study argues that no evaluation of the structural behavior of any historic building can afford to ignore its archaeological “biography” of modification and repair. KW - Archaeology KW - Historical earthen building KW - Materials characterization KW - Rammed earth KW - Static monitoring PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-396274 DO - https://doi.org/10.1080/15583058.2016.1277283 VL - 11 IS - 5 SP - 636 EP - 655 PB - Taylor & Francis Group AN - OPUS4-39627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asadujjaman, Asad A1 - Bertin, Annabelle A1 - Schönhals, Andreas T1 - Dielectric analysis of the upper critical solution temperature behaviour of a poly(acrylamide-coacrylonitrile) copolymer system in water N2 - A copolymer consisting of acrylamide (AAm) and acrylonitrile (AN) in aqueous solution was investigated using broadband dielectric spectroscopy at frequencies between 10⁻¹ Hz and 10⁶ Hz in the temperature range from 2 °C to 60 °C. This system shows an UCST phase behavior. The phase transition and aggregation behavior is monitored by both the temperature and frequency dependence of the complex conductivity σ*(f, T), where the AN fraction and the concentration of the solution were varied. Additionally, the dielectric data are compared with the results obtained from dynamic light scattering measurements. The temperature dependence of the DC conductivity (σDC) of the copolymer solution is monitored and the phase transition temperature (PTT) of the poly(AAm-co-AN) copolymer is deduced from a change in the T-dependence of the DC conductivity. The change in σDC can be explained by decreased effective charge carrier mobility and a reduction of the effective charge number density at temperatures below the phase Transition temperature of the poly(AAm-co-AN) solution. A pronounced interfacial polarization effect on the frequency dependence of the real part of the conductivity (σ') is observed at temperatures below the phase Transition temperature. The charge carriers are blocked at the formed aggregates giving rise to this interfacial polarization. The dependence of the interfacial polarization on the acrylonitrile fraction in the copolymer and the concentration of the solution is studied in detail and conclusions concerning the internal structures of the copolymer aggregates are drawn. KW - Thermoresponsive polymres PY - 2017 DO - https://doi.org/10.1039/c6sm02684b SN - 1744-6848 SN - 1744-683X VL - 13 IS - 12 SP - 2384 EP - 2393 PB - Royl Society of Chemistry Publishing AN - OPUS4-39556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Schick, Ch. A1 - Schönhals, Andreas T1 - Unexpected behavior of ultra-thin films of blends of polystyrene/poly(vinyl methyl ether) studied by specific heat spectroscopy N2 - Specific heat spectroscopy (SHS) employing AC nanochip calorimetry was used to investigate the glassy dynamics of ultra-thin films (thicknesses: 10 nm–340 nm) of a polymer blend, which is miscible in the bulk. In detail, a Poly(vinyl methyl ether) (PVME)/Polystyrene (PS) blend with the composition of 25/75 wt. % was studied. The film thickness was controlled by ellipsometry while the film topography was checked by atomic force microscopy. The results are discussed in the framework of the balance between an adsorbed and a free surface layer on the glassy dynamics. By a self-assembling process, a layer with a reduced mobility is irreversibly adsorbed at the polymer/substrate interface. This layer is discussed employing two different scenarios. In the first approach, it is assumed that a PS-rich layer is adsorbed at the substrate. Whereas in the second approach, a PVME-rich layer is suggested to be formed at the SiO2 substrate. Further, due to the lower surface tension of PVME, with respect to air, a nanometer thick PVME-rich surface layer, with higher molecular mobility, is formed at the polymer/air interface. By measuring the glassy dynamics of the thin films of PVME/PS in dependence on the film thickness, it was shown that down to 30 nm thicknesses, the dynamic Tg of the whole film was strongly influenced by the adsorbed layer yielding a systematic increase in the dynamic Tg with decreasing the film thickness. However, at a thickness of ca. 30 nm, the influence of the mobile surface layer becomes more pronounced. This results in a systematic decrease in Tg with the further decrease of the film thickness, below 30 nm. These results were discussed with respect to thin films of PVME/PS blend with a composition of 50/50 wt.%as well as literature results. KW - Ultra thin polymer films PY - 2017 DO - https://doi.org/10.1063/1.4978505 SN - 0021-9606 SN - 1089-7690 VL - 146 IS - 20 SP - 203321-1 EP - 203321-9 PB - AIP Publishing AN - OPUS4-39558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meschut, G. A1 - Janzen, V. A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Frei, J. T1 - Charakterisierung des Bruch- und Festigkeits verhaltens von widerstandspunktgeschweißten Aluminiumverbindungen N2 - Die Reduktion des Fahrzeuggewichts ist ein wesentlicher Ansatz zur Ver-ringerung des Energie- und Ressourcenverbrauchs und damit zur Senkung der CO2-Emissionen im Automobilbau. In der Karosserieentwicklung kann der vermehrte Einsatz von Aluminiumwerkstoffen einen bedeutenden Beitrag dazu leisten. Im preissensitiven Umfeld des Karosseriebaus etabliert sich das bei Stahlanwendungen genutzte Widerstandspunktschweißen zunehmend auch für Aluminiumverbindungen. Verfahrensbedingte Herausforderungen, wie verkürzte Elektrodenstandzeiten und mangelnde Kenntnis über den Einfluss von Imperfektionen auf die Festigkeit, begrenzen dennoch die Weiterverbreitung des Verfahrens und stellen die Prozessrobustheit insgesamt in Frage. Im Rahmen des hier vorgestellten Forschungsvorhabens wurden das Auftreten verschiedener Brucharten experimentell untersucht und Prognosefunktionen zur Abschätzung der Tragfähigkeit von Widerstandspunktschweißverbindungen unter verschiedenen Belastungsfällen erstellt. Anschließend wurde der Einfluss von Oberflächenrissen und Rissen in der Schweißlinse auf die Scherzugfestigkeit sowohl experimentell als auch simulativ analysiert. KW - Aluminium KW - Widerstandspressschweißen KW - Rissbildung KW - Festigkeit KW - Werkstofffragen PY - 2017 UR - http://www.schweissenundschneiden.de/article/charakterisierung-des-bruch-und-festigkeitsverhaltens-von-widerstandspunktgeschweissten-aluminiumverbindungen/ VL - 69 IS - 3 SP - 126 EP - 133 PB - DVS Media GmbH AN - OPUS4-39577 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dieck, S. A1 - Rosemann, Paul A1 - Kromm, Arne A1 - Halle, T. T1 - Reversed austenite for enhancing ductility of martensitic stainless steel N2 - The novel heat treatment concept, “quenching and partitioning” (Q&P) has been developed for high strength steels with enhanced formability. This heat treatment involves quenching of austenite to a temperature between martensite start and finish, to receive a several amount of retained austenite. During the subsequent annealing treatment, the so called partitioning, the retained austenite is stabilized due to carbon diffusion, which results in enhanced formability and strength regarding strain induced austenite to martensite transformation. In this study a Q&P heat treatment was applied to a Fe-0.45C-0.65Mn-0.34Si-13.95Cr stainless martensite. Thereby the initial quench end temperature and the partitioning time were varied to characterize their influence on microstructural evolution. The microstructural changes were analysed by dilatometer measurements, X-ray diffraction and scanning electron microscopy, including electron backscatter diffraction. Compression testing was made to examine the mechanical behaviour. It was found that an increasing partitioning time up to 30 min leads to an enhanced formability without loss in strength due to a higher amount of stabilized retained and reversed austenite as well as precipitation hardening. T2 - 19th Chemnitz Seminar on Materials Engineering – 19. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 16.03.2017 KW - Quenching and partitioning KW - Martensitic stainless steels KW - Heat treatment KW - Transformation induced plasticity KW - High ductility PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395328 DO - https://doi.org/10.1088/1757-899X/181/1/012034 SN - 1757-899X SN - 1757-8981 VL - 181 IS - Conference 1 SP - Article UNSP 012034, 1 EP - 8 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-39532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Millar, Steven A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Revealing hidden spectral information of chlorine and sulfur in data of a mobile Laser-induced Breakdown Spectroscopy system using chemometrics N2 - For the damage assessment of reinforced concrete structures the quantified ingress profiles of harmful species like chlorides, sulfates and alkali need to be determined. In order to provide on-site analysis of concrete a fast and reliable method is necessary. Low transition probabilities as well as the high ionization energies for chlorine and sulfur in the near-infrared range makes the detection of Cl I and S I in low concentrations a difficult task. For the on-site analysis a mobile LIBS-system (k = 1064 nm, Epulse ≤ 3 mJ, t = 1.5 ns) with an automated scanner has been developed at BAM. Weak chlorine and sulfur signal intensities do not allow classical univariate analysis for process data derived from the mobile system. In order to improve the analytical performance multivariate analysis like PLS-R will be presented in this work. A comparison to standard univariate analysis will be carried out and results covering important parameters like detection and quantification limits (LOD, LOQ) as well as processing variances will be discussed (Allegrini and Olivieri, 2014 [1]; Ostra et al., 2008 [2]). It will be shown that for the first time a low cost mobile system is capable of providing reproducible chlorine and sulfur analysis on concrete by using a low sensitive system in combination with multivariate evaluation. KW - LIBS KW - Chemometrics KW - Building materials PY - 2017 DO - https://doi.org/10.1016/j.sab.2017.04.001 SN - 0584-8547 VL - 132 SP - 43 EP - 49 PB - Elsevier B.V. AN - OPUS4-40066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joester, Maike A1 - Seifert, Stephan A1 - Emmerling, Franziska A1 - Kneipp, Janina T1 - Physiological influence of silica on germinating pollen as shown by Raman spectroscopy N2 - The process of silicification in plants and the biochemical effects of silica in plant tissues are largely unknown. To study the molecular changes occurring in growing cells that are exposed to higher than normal concentration of silicic acid, Raman spectra of germinating pollen grains of three species (Pinus nigra, Picea omorika, and Camellia japonica) were analyzed in a multivariate classification approach that takes into account the variation of biochemical composition due to species, plant tissue structure, and germination condition. The results of principal component analyses of the Raman spectra indicate differences in the utilization of stored lipids, a changed mobilization of storage carbohydrates in the pollen grain bodies, and altered composition and/or structure of cellulose of the developing pollen tube cell walls. These biochemical changes vary in the different species. KW - Silica KW - Raman spectroscopy KW - Principal component analysis PY - 2017 DO - https://doi.org/10.1002/jbio.201600011 SN - 1864-063X SN - 1864-0648 VL - 10 IS - 4 SP - 542 EP - 552 AN - OPUS4-40090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weltschev, Margit T1 - Auswahl eines Kennwertes für den Vergleich des mechanischen Leistungsniveaus von Polyethylenformstoffen für Gefahrgutverpackungen T1 - Parameter selection for the comparison of the mechanical level of performance of polyethylene molding materials for packagings of dangerous goods N2 - Zum Vergleich der Polyethylenformstoffe für eine Bauart von Gefahrgutverpackungen und IBC wurden die Materialkennwerte: Schmelze-Massefließrate MFR, Dichte D, Kerbschlag-zähigkeit acN bei -30 °C, Spannungsrissbeständigkeit (bestimmt mit dem Full Notch Creep Test) und Beständigkeit gegen oxidativen Abbau Ox (bestimmt durch den prozentualen Anstieg des MFR in Salpetersäure) in der DIN EN 15507 – Verpackung – Verpackungen zur Beförderung gefährlicher Güter – Vergleichende Werkstoffprüfung von Polyethylensorten ausgewählt. Das Ziel der Untersuchungen war die Auswahl eines Kennwertes für die Bestimmung des mechanischen Leistungsniveaus von Polyethylenformstoffen, da unter Druck Verpackungen beulen oder knicken. Zur Auswahl standen drei Prüfverfahren: a) Bestimmung der Biegesteifigkeit S nach DIN 53 350 (Prinzip von Ohlsen). b) Bestimmung der Biegefestigkeit σfM und Biegedehnung ɛfM nach DIN EN ISO 178 c) Bestimmung der Druckkraft Fmax und Verformung dL bei Fmax nach DIN EN ISO 604. Die Prüfmethode zur Bestimmung der Biegesteifigkeit nach DIN 53 350 eignet sich zum Vergleich des mechanischen Leistungsniveaus der Formstoffe. Zur Verbesserung der Reproduzierbarkeit der Ergebnisse sollte der Skalierungsbereich der Prüfapparatur erweitert wer-den, um genauere Messergebnisse zu erzielen. Der Dreipunktbiegeversuch nach DIN EN ISO 178 eignet sich bei verformungsfähigen Kunststoffen, wie dem Polyethylen, zur Bestimmung der Biegefestigkeit σfM. Dieser Ver-such besitzt den Nachteil, dass am Ort des maximalen Biegemoments in der Randschicht, wo auch die maximale Biegespannung erzeugt wird, zusätzlich der Biegestempel angreift. Die Messergebnisse haben gezeigt, dass die Druckprüfung nach DIN EN ISO 604 sich sehr gut zur Bewertung des mechanischen Verhaltens der Polyethylenformstoffe unter Druckbelastung (Stapeldruckprüfung der Verpackungen) eignet. KW - Gefahrgutverpackung KW - Polyethylen KW - Biegesteifigkeit KW - Biegefestigkeit KW - Druckkraft PY - 2017 DO - https://doi.org/10.3139/120.111025 SN - 0025-5300 VL - 59 IS - 5 SP - 466 EP - 471 PB - Carl Hanser Verlag GmbH & Co.KG CY - München AN - OPUS4-40145 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodrigues, A.C.P. A1 - Österle, Werner A1 - Gradt, Thomas A1 - Azevedo, César Roberto de Farias T1 - Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4, Cu and graphite N2 - Copper, magnetite and graphite particles were mixed in order to observe their impact on the coefficient of friction (CoF) during pin-on-disc tests and on the tribofilm formation after testing. Pure magnetite powder provided a value of CoF of 0.4. Magnetite-copper mixtures tested at 400 °C revealed lower CoF values (~0.4) than those at room temperature (~0.6). Magnetite-graphite and magnetite-graphite-copper mixtures presented lower CoF values (~0.3). All systems formed a magnetite-based tribofilm and patches of metallic copper were found on the tribosurfaces of the mixtures containing copper. Carbon layers and graphite nanoinclusions were observed in the graphite mixtures. The incorporation of zirconia particles, a by-product of ball milling mixing, prevented the selective transfer of graphite and copper to the tribosurfaces of some of the samples. KW - Brake pad materials KW - Sliding friction KW - Transfer layer KW - Surface analysis KW - Model friction tests PY - 2017 DO - https://doi.org/10.1016/j.triboint.2017.02.014 SN - 0301-679X VL - 110 SP - 103 EP - 112 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-40104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sproesser, G. A1 - Chang, Y.-J. A1 - Pittner, Andreas A1 - Finkbeiner, M. A1 - Rethmeier, Michael T1 - Environmental energy efficiency of single wire and tandem gas metal arc welding N2 - This paper investigates gas metal arc welding (GMAW) with respect to energy consumption and its associated environmental impacts. Different material transfer modes and power levels for single wire GMAW (SGMAW) and tandem GMAW (TGMAW) are evaluated by means of the indicator electrical deposition efficiency. Furthermore, the wall-plug efficiency of the equipment is measured in order to describe the total energy consumption from the electricity grid. The results show that the energy efficiency is highly affected by the respective process and can be significantly enhanced by a TGMAW process. The wall-plug efficiency of the equipment shows no significant dependency on the power range or the material transfer mode. Moreover, the method of life cycle assessment (LCA) is adopted in order to investigate the influences of energy efficient welding on the environmental impacts. In the comparative LCA study, the demand of electrical energy is reduced up to 24%. In consequence, the indicator values for global warming potential (100), acidification potential, eutrophication potential, and photochemical ozone creation potential are reduced up to 11%. KW - Energy input KW - Tandem welding KW - MAG welding KW - Environment KW - Lifetime PY - 2017 DO - https://doi.org/10.1007/s40194-017-0460-y SN - 0043-2288 SN - 1878-6669 VL - 61 IS - 4 SP - 733 EP - 743 PB - Springer CY - Heidelberg AN - OPUS4-39877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hennig, C. A1 - Weiss, S. A1 - Kraus, Werner A1 - Kretzschmar, J. A1 - Scheinost, A.C. T1 - Solution species and crystal structure of Zr(IV) acetate N2 - Complex formation and the coordination of zirconium with acetic acid were investigated with Zr K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) and single-crystal diffraction. Zr K-edge EXAFS spectra show that a stepwise increase of acetic acid in aqueous solution with 0.1 M Zr(IV) leads to a structural rearrangement from initial tetranuclear hydrolysis species [Zr4(OH)8(OH2)16]8+ to a hexanuclear acetate species Zr6(O)4(OH)4(CH3COO)12. The solution species Zr6(O)4(OH)4(CH3COO)12 was preserved in crystals by slow evaporation of the aqueous solution. Single-crystal diffraction reveals an uncharged hexanuclear cluster in solid Zr6(μ3-O)4(μ3-OH)4(CH3COO)12·8.5H2O. EXAFS measurements show that the structures of the hexanuclear zirconium acetate cluster in solution and the solid state are identical. KW - Complex formation KW - Crystal structure KW - Zr(iV) compounds PY - 2017 DO - https://doi.org/10.1021/acs.inorgchem.6b01624 SN - 0020-1669 SN - 1520-510X VL - 56 IS - 5 SP - 2473 EP - 2480 PB - ACS AN - OPUS4-39677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joseph, A. A1 - Bernardes, C. E. S. A1 - Druzhinina, A. I. A1 - Varushchenko, R. M. A1 - Nguyen, Thi Yen A1 - Emmerling, Franziska A1 - Yuan, L. A1 - Dupray, V. A1 - Coquerel, G. A1 - Minas da Piedade, M. E. T1 - Polymorphic phase transition in 4′-hydroxyacetophenone: Equilibrium temperature, kinetic barrier, and the relative stability of Z′=1 and Z′=2 forms N2 - Particularly relevant in the context of polymorphism is understanding how structural, thermodynamic, and kinetic factors dictate the stability domains of polymorphs, their tendency to interconvert through phase transitions, or their possibility to exist in metastable states. These three aspects were investigated here for two 4′-hydroxyacetophenone (HAP) polymorphs, differing in crystal system, space group, and number and conformation of molecules in the asymmetric unit. The results led to a ΔfGm°-T phase diagram highlighting the enantiotropic nature of the system and the fact that the Z′=1 polymorph is not necessarily more stable than its Z′=2 counterpart. It was also shown that the form II → form I transition is entropy driven and is likely to occur through a nucleation and growth mechanism, which does not involve intermediate phases, and is characterized by a high activation energy. Finally, although it has been noted that conflicts between hydrogen bond formation and close packing are usually behind exceptions from the hypothesis of Z′=1 forms being more stable than their higher Z′ analogues, in this case, the HAP polymorph with stronger hydrogen bonds (Z′=2) is also the one with higher density. KW - Polymorphism KW - Polymorphic transition KW - 4'-hydroxyacetophenone PY - 2017 DO - https://doi.org/10.1021/acs.cgd.6b01876 SN - 1528-7483 SN - 1528-7505 VL - 17 IS - 4 SP - 1918 EP - 1932 PB - ACS AN - OPUS4-40167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Myrach, Philipp A1 - Jonietz, Florian A1 - Meinel, Dietmar A1 - Suwala, Hubert A1 - Ziegler, Mathias T1 - Calibration of thermographic spot weld testing with X-ray computed tomography N2 - The paper presents an attempt for the calibration of an active thermography method that is suitable for the non-destructive evaluation of spot welds. Nowadays, the quality of spot welds is commonly characterised by the application of random chisel tests, which are time consuming, expensive and destructive. Recently a non-destructive testing method by means of active thermography was proposed that relies on the fact that the mechanical connection formed by the spot weld also serves as a thermal bridge between the two steel sheets joined in the welding process. It is shown in this paper that this thermal bridge can be thermographically characterised by extracting a measure for the spot weld diameter and hence the quality of the spot weld. The determination of the absolute value of the diameter hereby relies on a calibration of the testing system, which is performed by means of X-ray computed tomography in this study. The experiments were carried out using different experimental approaches, namely transmission as well as reflection geometry wSetup in reflectionith laser illumination. A comprehensive evaluation of samples produced using different welding currents, hence different quality, was carried out in order to validate the thermographic results. KW - Thermography KW - Spot welds KW - Spot welding KW - Computed thomography KW - Non-destructive testing PY - 2017 DO - https://doi.org/10.1080/17686733.2017.1281554 SN - 1768-6733 SN - 2116-7176 VL - 14 IS - 1 SP - 122 EP - 131 PB - Taylor & Francis CY - London AN - OPUS4-40180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietzsch, Michael A1 - Andrusenko, Iryna A1 - Branscheid, Robert A1 - Emmerling, Franziska A1 - Kolb, Ute A1 - Tremel, Wolfgang T1 - Snapshots of calcium carbonate Formation - a step by step analysis N2 - Recent advances in our understanding of CaCO, nucleation from solution have provoked new and challenging questions. We have studied CaC03 formation using precipitation by carbonate ester hydrolysis which ensures precipitation from a strictly homogeneous solution state and allows “titrating” carbonate to a solution with a given Ca2+ concentration on a timescale suited for kinetic studies. Nucleation and crystallization were traced by combining dynamic light Scattering (DLS) and transmission electron microscopy (TEM). DLS served as in situ technique to identify the nucleation time, to monitor particle size evolution, to discriminate different precipitation mechanisms and to validate reproducibility. TEM snapshots taken during different stages of the precipitation process identified different phases and morphologies. At a high level of supersaturation homogeneous nucleation in solution led to the formation of amorphous CaC03 particles (diameter=30 nm), which transformed via vaterite to calcite. Nucleation occurred uniformly in solution which appears to be unique for the CaC03 System. In the presence of Na-polymethacrylate (Na-PMA), heterogeneous nucleation was suppressed and Ca-polymer aggregates were formed in the prenucleation stage. Beyond a critical threshold supersaturation CaC03 particles formed in solution outside of these aggregates. The nucleation process resembled that without additive, indicating that Na-PMA exerts only a minor effect on the CaC03 nucleation. In the postnucleation stage, the polymer led to the formation of extended liquid-like networks, which served as a precursor phase for solid ACC particles that formed alongside the network. KW - biomineralization KW - calcium carbonate KW - nucleation KW - polymer additives PY - 2017 DO - https://doi.org/10.1515/zkri-2016-1973 SN - 2194-4946 SN - 2196-7105 VL - 232 IS - 1-3 SP - 255 EP - 265 PB - De Gruyter CY - Berlin AN - OPUS4-39863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Bach, S. A1 - Gorelik, T. A1 - Kolb, U. A1 - Tremel, W. A1 - Emmerling, Franziska T1 - Divalent metal phosphonates – new aspects for syntheses, in situ characterization and structure solution N2 - Divalent metal phosphonates are promising hybrid materials with a broad field of application. The rich coordination chemistry of the phosphonate linkers enables the formation of structures with different dimensionalities ranging from isolated complexes and layered structures to porous frameworks incorporating various functionalities through the choice of the building blocks. In brief, metal phosphonates offer an interesting opportunity for the design of multifunctional materials. Here, we provide a short review on the class of divalent metal phosphonates discussing their syntheses, structures, and applications. We present the advantages of the recently introduced mechanochemical pathway for the Synthesis of divalent phosphonates as a possibility to generate new, in certain cases metastable compounds. The benefits of in situ investigation of synthesis mechanisms as well as the implementation of sophisticated methods for the structure analysis of the resulting compounds are discussed. KW - Metal phosphonate KW - Mechanochemistry PY - 2017 DO - https://doi.org/10.1515/zkri-2016-1971 SN - 2194-4946 SN - 2196-7105 VL - 232 IS - 1-3 SP - 209 EP - 222 PB - De Gruyter AN - OPUS4-40003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Microstructure and tribological performance of NbC-Ni cermets modified by VC and Mo2C N2 - The current study reports on the influence of the Addition of 5–15 vol% VC or/and Mo2C carbide on the microstructure and mechanical properties of nickel bonded NbC cermets, which are compared to cobalt bonded NbC cermets. The NbC, Ni and secondary carbides powder mixtures were liquid phase sintered for 1 h at 1420 °C in vacuum. The fully densified cermets are composed of a cubic NbC grains matrix and an evenly distributed fcc Ni binder. NbC grain growth was significantly inhibited and a homogeneous NbC grain size distribution was obtained in the cermets with VC/Mo2C additions. The mechanical properties of the NbC-Ni matrix cermets are strongly dependent on the carbide and Ni binder content and are directly compared to their NbC-Co equivalents. The liquid phase sintered NbC-12 vol% Ni cermet had a modest Vickers hardness (HV30) of 1077 ± 22 kg/mm2 and an indentation toughness of 9.1 ± 0.5 MPa·m1/2. With the addition of 10–15 vol% VC, the hardness increased to 1359 ± 15 kg/mm2, whereas the toughness increased to 11.3 ± 0.1 MPa·m1/2. Addition of 5 and 10 vol% Mo2C into a NbC-12 vol% Ni mixtures generated the same values in HV30 and KIC when compared to VC additions. A maximum flexural strength of 1899 ± 77 MPa was obtained in the cermet with 20 vol% Ni binder and 4 vol% VC+4 vol% Mo2C addition, exhibiting a high fracture toughness of 15.0 ± 0.5 MPa·m1/2, but associated with a loss in hardness due to the high Ni content. The dry sliding wear behaviour was established at room temperature and 400 °C from 0.1 to 10 m/s. KW - Cermet KW - Liquid phase sintering KW - Grain growth KW - Wear KW - Niobium carbide PY - 2017 DO - https://doi.org/10.1016/j.ijrmhm.2017.03.012 SN - 0263-4368 VL - 66 SP - 188 EP - 197 AN - OPUS4-40505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Koter, Robert A1 - Pentzien, Simone A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications N2 - Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Titanium nitride films KW - Friction KW - Wear PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216322486 DO - https://doi.org/10.1016/j.apsusc.2016.10.132 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 572 EP - 579 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hermens, U. A1 - Kirner, Sabrina A1 - Emonts, C. A1 - Comanns, P. A1 - Skoulas, E. A1 - Mimidis, A. A1 - Mescheder, H. A1 - Winands, K. A1 - Krüger, Jörg A1 - Stratakis, E. A1 - Bonse, Jörn T1 - Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials N2 - Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface’s wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - Lizard KW - Surface wetting KW - Fluid transport KW - Steel PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216328306 DO - https://doi.org/10.1016/j.apsusc.2016.12.112 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 499 EP - 507 PB - Elsevier, North-Holland CY - Amsterdam AN - OPUS4-40509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duffner, Eric A1 - Schoppa, André A1 - Szczepaniak, Mariusz T1 - Untersuchung der Haltbarkeit von Reparaturmaßnahmen an Bremsleitungsabschnitten durch hydraulische Berstdruckprüfungen N2 - Im Rahmen einer Bachelorarbeit zum Thema „Untersuchungen an Bremsleitungsabschnittsreparaturen“ zwischen der HTW Berlin und der TÜV Rheinland Kraftfahrt GmbH wurden in Zusammenarbeit mit der Bundesanstalt für Materialforschung und -prüfung (BAM) Berstdruckprüfungen durchgeführt. Im Rahmen der Kooperation sollte untersucht werden, inwiefern Reparaturmaßnahmen an beschädigten Bremsleitungsabschnitten sicherheitstechnisch unbedenklich sind, auch in Bezug auf die Verwendung unterschiedlicher auf dem Markt erhältlicher Bremsleitungsmaterialien. KW - Bremsleitung KW - Berstprüfung PY - 2017 SN - 2191-007 VL - 7 IS - 6 SP - 44 PB - Springer VDI-Verlag CY - Düsseldorf AN - OPUS4-40490 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Miccoli, Lorenzo A1 - Müller, U. A1 - Pospisil, S. T1 - Rammed earth walls strengthened with polyester fabric strips: Experimental analysis under in-plane cyclic loading N2 - This study analyses the mechanical behaviour under pseudo-dynamic loading of structural elements built in rammed earth and strengthened with polyester fabric strips. This strengthening technique was developed to exploit the strength potential of rammed earth and to solve its lack of tensile strength. For this reason, in-plane cyclic tests were carried out to investigate the shear behaviour of unstrengthened and strengthened walls. The strengthening technique requires low-tech equipment and workmanship, uses readily available, not expensive and industrially standardised materials. The experimental results were analysed in terms of stiffness degradation, energy dissipation capacity and equivalent viscous damping. Although the unstrengthened and strengthened walls confirmed a limited ductile behaviour, the findings confirm that the strengthening contributes to limit the spread of the diagonal cracks and provide an increase of strength in terms of horizontal load and displacement capacity. KW - Rammed earth KW - Pseudo-dynamic loads KW - Shear-compression tests KW - Strengthening KW - Polyester fabric strips PY - 2017 DO - https://doi.org/10.1016/j.conbuildmat.2017.05.115 IS - 149 SP - 29 EP - 36 PB - Elsevier Ltd. AN - OPUS4-40497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Caricato, A.P. A1 - Focsa, C. A1 - Krüger, Jörg A1 - Palla Papavlu, A. T1 - European materials research society spring meeting 2016 symposium "Laser - materials interactions for tailoring future's applications" Preface N2 - This Conference Proceedings volume contains a selection of the contributions presented in Symposium C “Laser-material interactions for tailoring future applications” organized during the annual Spring Meeting of the European Materials Research Society (E-MRS) held from May 2nd to 6th 2016 in the Lille Grand Palais, France. T2 - EMRS Spring Meeting 2016, Symposium "“Laser-material interactions for tailoring future applications” CY - Lille, France DA - 02.05.2016 KW - European Materials Research Society (E-MRS) KW - Laser-material interactions KW - Spring Meeting 2016 PY - 2017 DO - https://doi.org/10.1016/j.apsusc.2017.04.089 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 419 EP - 419 PB - Elsevier B.V. AN - OPUS4-40570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hönig, Gerald A1 - Westerkamp, S. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Shielding electrostatic fields in polar semiconductor nanostructures N2 - Polar semiconductor materials enable a variety of classic and quantum-light sources, which are optimized continuously. However, one key problem—the inherent electric crystal polarization of such materials—remains unsolved and deteriorates the radiative exciton decay rate. We suggest a sequence of reverse interfaces to compensate these polarization effects, while the polar, natural crystal growth direction is maintained. Former research approaches, like growth on less-polar crystal planes or even the stabilization of unnatural phases, never reached industrial maturity. In contrast, our concept provides a way for the development of ultrafast devices based on established growth processes for polar materials, while the electric potential landscape becomes adjustable. KW - Piezopolarisation KW - Spontane Polarisation KW - Halbleiterphysik KW - Nanophysik KW - Optoelektronik PY - 2017 DO - https://doi.org/10.1103/PhysRevApplied.7.024004 SN - 2331-7019 VL - 7 IS - 2 SP - 024004-1 EP - 024004-12 PB - American Physical Society CY - College Park, MD 20740-3844 AN - OPUS4-39125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalinka, Gerhard A1 - ElAbshihy, K. T1 - Circumventing boundary effects while characterizing epoxy/copper interphases using nanoindentation N2 - Characterization of the size and mechanical properties of interphases is essential when designing multicomponent materials. When nanoindentation is used to investigate the size and mechanical properties of an interphase, a common challenge is that the indenter or the stress zone formed around it are often restricted by the reinforcement, making it difficult to distinguish the mechanical property variations caused by the interphase itself from those caused by the boundary effect. In this work, a testing system was developed that allows determining the indent affected zone and accounting for it in the interphase measurements of an epoxy/Cu system. Using finite element analysis, we confirmed the validity of the proposed system. Nanoindentation was used to investigate the Interphase between copper and two different epoxy systems; amine-cured and anhydride-cured. Nanoindentation results showed that a copper layer that is only 10 nm thick still exhibits a constriction effect on the indentations in its vicinity. The amine-cured epoxy did not show any sign of interphase existence using the introduced method. However, a soft interphase with a thickness of ~1.7 μm was measured on theanhydride-cured epoxy. Furthermore, we show that the proposed system can be used to determine the interphase thickness as well as its relative mechanical properties regardless of the indentation depth. This system can be further used for investigating other polymer/metal interphases to better understand the factors influencing them, thus helping engineer the interphase size and properties to enhance composite performance. KW - Interphase KW - Polymer-metal KW - Epoxy KW - Copper KW - Composites KW - Nanoindentation PY - 2017 DO - https://doi.org/10.1080/09276440.2017.1286878 SN - 0927-6440 SN - 1568-5543 VL - 24 IS - 9 SP - 833 EP - 848 PB - Taylor & Francis CY - UK AN - OPUS4-39128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Wilke, Manuel A1 - Fischer, Franziska A1 - Röllig, Mathias A1 - Maierhofer, Christiane A1 - Emmerling, Franziska T1 - Warming up for mechanosynthesis – temperature development in ball mills during synthesis N2 - We present a first direct measurement of the temperature during milling combined with in situ Raman spectroscopy monitoring. The data reveal a low temperature increase due to the mechanical impact and clear temperature increases as a consequence of the reaction heat. Based on the data, temperature rises as postulated in the magma plasma and hot spot theory can be excluded for soft matter milling syntheses. KW - Thermography KW - Milling KW - Mechanochemistry KW - Soft matter PY - 2017 DO - https://doi.org/10.1039/c6cc08950j SN - 1364-548X SN - 1359-7345 SN - 0009-241X VL - 53 IS - 10 SP - 1664 EP - 1667 AN - OPUS4-39251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, Peng A1 - Ogle, Kevin A1 - Erning, Johann Wilhelm A1 - Hutchinson, Michael John A1 - Scully, John T1 - An in situ kinetic study of brass dezincification and corrosion N2 - The kinetics of the anodic dissolution of brass (CuZn42 and CuZn21Si3P) in synthetic tap water were investigated by atomic emission spectroelectrochemistry. Elemental Cu and Zn dissolution rates were measured in situ and in real time during galvanostatic dissolution. A complete mass/charge balance for the system yielded, as a function of applied current and a function of time, the quantity of Cu in the dezincification layer and the quantity of Cu and Zn in the oxide layer. In this way, a complete kinetic characterization of the fundamental chemical processes occurring during dezincification was realized for the first time. The oxide layer was composed primarily of Cu2O as indicated by grazing incidence XRD and Raman analysis. The soluble Cu oxidation product was determined to be Cu(II) by a mass/charge balance. Zn was oxidized to soluble Zn(II) leaving behind a trivial amount of solid Zn corrosion product on the surface. The kinetic analysis depicts a two-stage dissolution process of dezincification: a first stage of a rapid growth of the dezincified layer and a second stage where the growth of dezincified layer was much slower. The Cu2O layer grows continually during the exposure. KW - Dezincification KW - Spectroelectrochemistry KW - Brass PY - 2017 DO - https://doi.org/10.1016/j.electacta.2017.01.078 SN - 0013-4686 SN - 1873-3859 VL - 229 SP - 141 EP - 154 PB - Elsevier AN - OPUS4-39164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yilmaz, M. A1 - Wollschläger, Nicole A1 - Esfahani, M. N. A1 - Österle, Werner A1 - Leblebici, Y. A1 - Alaca, B. E. T1 - Superplastic behavior of silica nanowires obtained by direct patterning of silsesquioxane-based precursors N2 - Silica nanowires spanning 10 μm-deep trenches are fabricated from different types of silsesquioxane-based precursors by direct e-beam patterning on silicon followed by release through deep reactive ion etching. Nanowire aspect ratios as large as 150 are achieved with a critical dimension of about 50 nm and nearly rectangular cross-sections. In situ bending tests are carried out inside a scanning electron microscope, where the etch depth of 10 mm provides sufficient space for deformation. Silica NWs are indeed observed to exhibit superplastic behavior without fracture with deflections reaching the full etch depth, about two orders of magnitude larger than the nanowire thickness. A large-deformation elastic bending model is utilized for predicting the deviation from the elastic behavior. The results of forty different tests indicate a critical stress level of 0.1–0.4 GPa for the onset of plasticity. The study hints at the possibility of fabricating silica nanowires in a monolithic Fashion through direct e-beam patterning of silsesquioxane-based resins. The fabrication technology is compatible with semiconductor manufacturing and provides silica nanowires with a very good structural integrity. KW - Silica nanowires KW - HSQ KW - Superplasticity KW - In situ bending tests PY - 2017 DO - https://doi.org/10.1088/1361-6528/aa5b80 SN - 0957-4484 SN - 1361-6528 VL - 28 IS - 11 SP - Article 115302, 1 EP - 10 AN - OPUS4-39166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yilmaz, M. A1 - Kilinc, Y. A1 - Nadar, G. A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Österle, Werner A1 - Leblebici, Y. A1 - Alaca, B. E. T1 - Top-down technique for scaling to nano in silicon MEMS N2 - Nanoscale building blocks impart added functionalities to microelectromechanical systems (MEMS). The integration of silicon nanowires with MEMS-based sensors leading to miniaturization with improved sensitivity and higher noise immunity is one example highlighting the advantages of this multiscale approach. The accelerated pace of research in this area gives rise to an urgent need for batch-compatible solutions for scaling to nano. To address this challenge, a monolithic fabrication approach of silicon nanowires with 10-lm-thick silicon-on-insulator (SOI) MEMS is developed in this work. A two-step Si etching approach is adopted, where the first step creates a shallow surface protrusion and the second step releases it in the form of a nanowire. It is during this second deep etching step that MEMS—with at least a 2-order-of-magnitude scale difference - is formed as well. The technique provides a pathway for preserving the lithographic resolution and transforming it into a very high mechanical precision in the assembly of micro- and nanoscales with an extreme topography. Validation of the success of integration is carried out via in situ actuation of MEMS inside an electron microscope loading the nanowire up to its fracture. The technique yields nanowires on the top surface of MEMS, thereby providing ease of access for the purposes of carrying out surface processes such as doping and contact formation as well as in situ observation. As the first study demonstrating such monolithic integration in thick SOI, the work presents a pathway for scaling down to nano for future MEMS combining multiple scales. KW - Nanowires KW - Silicon KW - Top-down KW - MEMS PY - 2017 DO - https://doi.org/10.1116/1.4978047 SN - 1071-1023 VL - 35 IS - 2 SP - 022001-1 EP - 022001-7 PB - America Vacuum Society AN - OPUS4-39370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Jan P. A1 - Götschel, S. A1 - Maierhofer, Christiane A1 - Weiser, M. T1 - Determining the Material Parameters for the Reconstruction of Defects in Carbon Fiber Reinforced Polymers from Data Measured by Flash Thermography N2 - Flash thermography is a fast and reliable non-destructive testing method for the investigation of defects in carbon fiber reinforced polymer (CFRP) materials. In this paper numerical simulations of transient thermography data are presented, calculated for a quasi-isotropic flat bottom hole sample. They are compared to experimental data. These simulations are one important step towards the quantitative reconstruction of a flaw by assessing thermographic data. The applied numerical model is based on the finite-element method, extended by a semi-analytical treatment of the boundary of the sample, which is heated by the flash light. A crucial part for a reliable numerical model is the prior determination of the material parameters of the specimen as well as of the experimental parameters of the set-up. The material parameters in plane and in depth diffusivity are measured using laser line excitation. In addition, the absorption and heat transfer process of the first layers is investigated using an IR microscopic lens. The performance of the two distinct components of CFRP during heating – epoxy resin and carbon fibers – is examined. Finally, the material parameters are optimized by variation and comparison of the simulation results to the experimental data. The optimized parameters are compared to the measured ones and further methods to ensure precise material parameter measurements are discussed. T2 - 43rd Review of Progress in Quantitative Nondestructive Evaluation CY - Atlanta, GA, USA DA - 17.07.2016 KW - Aktive Thermografie KW - Thermische Diffusivität KW - Zerstörungsfreie Prüfung KW - Kohlenstofffaserverstärkter Kunststoff KW - CFK KW - Active thermography KW - Thermal diffusivity KW - Non-Destructive testing KW - Carbon fiber reinforced polymer KW - CFRP PY - 2017 SN - 978-0-7354-1474-7 DO - https://doi.org/10.1063/1.4974671 SN - 0094-243X VL - 1806 IS - 1 SP - UNSP 100006-1 EP - 11 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-39332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Heídari, M. A1 - von Klitzing, R. A1 - Schönhals, Andreas T1 - Unveiling the dynamics of self-assembled layers of thin films of poly(vinyl methyl ether) (PVME) by nanosized relaxation spectroscopy N2 - A combination of nanosized dielectric relaxation (BDS) and thermal spectroscopy (SHS) was utilized to characterize the dynamics of thin films of Poly(vinyl methyl ether) (PVME) (thicknesses: 7 nm – 160 nm). For the BDS measurements, a recently designed nano-structured electrode system is employed. A thin film is spin-coated on an ultra-flat highly conductive silicon wafer serving as the bottom electrode. As top electrode, a highly conductive wafer with non-conducting nanostructured SiO2 nano-spacers with heights of 35 nm or 70 nm is assembled on the bottom electrode. This procedure results in thin supported films with a free polymer/air interface. The BDS measurements show two relaxation processes, which are analyzed unambiguously for thicknesses smaller than 50 nm. The relaxation rates of both processes have different temperature dependencies. One process coincidences in its position and temperature dependence with the glassy dynamics of bulk PVME and is ascribed to the dynamic glass transition of a bulk-like layer in the middle of the film. The relaxation rates were found to be thickness independent as confirmed by SHS. Unexpectedly, the relaxation rates of the second process obey an Arrhenius-like temperature dependence. This process was not observed by SHS and was related to the constrained fluctuations in a layer, which is irreversibly adsorbed at the substrate with a heterogeneous structure. Its molecular fluctuations undergo a confinement effect resulting in the localization of the segmental dynamics. To our knowledge, this is the first report on the molecular dynamics of an adsorbed layer in thin films. KW - Broadband dielectric spectroscopy KW - AC-nanochip calorimetry KW - Nanostructured capacitors KW - Thin films PY - 2017 UR - http://pubs.acs.org/doi/pdf/10.1021/acsami.6b14404 DO - https://doi.org/10.1021/acsami.6b14404 SN - 1944-8244 VL - 9 IS - 8 SP - 7535 EP - 7546 PB - ACS Publications CY - Washington DC AN - OPUS4-39291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Lohse, V. A1 - Negendank, D. A1 - Kormunda, M. A1 - Esser, N. T1 - Thin SnOx films for surface plasmon resonance enhanced ellipsometric gas sensing (SPREE) N2 - Background: Gas sensors are very important in several fields like gas monitoring, safety and environmental applications. In this approach, a new gas sensing concept is investigated which combines the powerful adsorption probability of metal oxide conductive sensors (MOS) with an optical ellipsometric readout. This concept Shows promising results to solve the problems of cross sensitivity of the MOS concept. Results: Undoped tin oxide (SnOx) and iron doped tin oxide (Fe:SnOx) thin add-on films were prepared by magnetron sputtering on the top of the actual surface plasmon resonance (SPR) sensing gold layer. The films were tested for their sensitivity to several gas species in the surface plasmon resonance enhanced (SPREE) gas measurement. It was found that the undoped tin oxide (SnOx) shows higher sensitivities to propane (C3H8) then to carbon monoxide (CO). By using Fe:SnOx, this relation is inverted. This behavior was explained by a change of the amount of binding sites for CO in the layer due to this iron doping. For hydrogen (H2) no such relation was found but the sensing ability was identical for both layer materials. This observation was related to a different sensing mechanism for H2 which is driven by the Diffusion into the layer instead of adsorption on the surface. Conclusion: The gas sensing selectivity can be enhanced by tuning the properties of the thin film overcoating. A relation of the binding sites in the doped and undoped SnOx films and the gas sensing abilities for CO and C3H8 was found. This could open the path for optimized gas sensing devices with different coated SPREE sensors. KW - Doped tin oxide KW - Ellipsometry KW - Gas sensing KW - Surface plasmon KW - Resonance KW - Thin films KW - Transparent conductive oxides PY - 2017 DO - https://doi.org/10.3762/bjnano.8.56 SN - 2190-4286 VL - 8 SP - 522 EP - 529 AN - OPUS4-39391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, M. S. S. A1 - Schartel, Bernhard A1 - Magalhães, F. D. A1 - Pereira, C. M. C. T1 - The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites N2 - The effectiveness of distinct fillers, from micro to nano-size scaled, on the fire behaviour of an epoxy resin and its carbon fibre reinforced composites was assessed by cone calorimetry. The performance was compared not only regarding the reaction to fire performance, but also in terms of thermal stability, glass transition temperature and microstructure. Regarding the fire reaction behaviour of nanofilled epoxy resin, anionic nanoclays and thermally oxidized carbon nanotubes showed the best results, in agreement with more compact chars formed on the surface of the burning polymer. For carbon fibre reinforced composite plates, the cone calorimeter results of modified resin samples did not show significant improvements on the heat release rate curves. Poorly dispersed fillers in the resin additionally caused reductions on the glass transition temperature of the composite materials. KW - Epoxy resin KW - Carbon fibre reinforced composite KW - Nanoclays KW - Carbon nanotubes KW - Flame retardants PY - 2017 DO - https://doi.org/10.1002/fam.2370 SN - 1099-1018 SN - 0308-0501 VL - 41 IS - 2 SP - 111 EP - 130 PB - Wiley & Sons, Ltd. AN - OPUS4-39085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Kang, N. A1 - Wang, D.-Y. A1 - Wurm, Andreas A1 - Schick, C. A1 - Schönhals, Andreas T1 - Crystallization behavior of nanocomposites based on poly(L-lactide) and MgAl layered double hydroxides - Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller N2 - Semicrystalline polymers have to be described by a three phase model consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on a semicrystalline polymer the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller). Polymer nanocomposite based on poly(L-lactide) and MgAl layered double hydroxide nanofiller were prepared. Due to the low crystallization rate of PLA ist crystallization can be suppressed by a high enough cooling rate, and the RAF is due only to the nanofiller. The MAF, CF, and RAF were estimated by Temperature Modulated DSC. For the first time CF, MAF, RAFcrystal, and RAFfiller could be estimated. It was found, that RAFfiller increases linearly with the concentration of the nanofiller for this system. Furthermore, RAFcrystal is only slightly influenced by the presence of the nanofiller. KW - Polymer based nanocomposites PY - 2017 DO - https://doi.org/10.1016/j.polymer.2016.11.065 SN - 0032-3861 SN - 1873-2291 VL - 108 SP - 257 EP - 264 PB - Elesevier AN - OPUS4-39052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation N2 - In order to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS) on single-crystalline zinc oxide (ZnO), two-colour double-fs-pulse experiments were performed. Parallel or cross-polarised double-pulse sequences at 400 and 800 nm wavelength were generated by a Mach–Zehnder interferometer, exhibiting inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Twenty two-colour double-pulse sequences were collinearly focused by a spherical mirror to the sample surface. The resulting LIPSS periods and areas were analysed by scanning electron microscopy. The delay-dependence of these LIPSS characteristics shows a dissimilar behaviour when compared to the semiconductor silicon, the dielectric fused silica, or the metal titanium. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS on ZnO when considering multi-photon excitation processes. Our results support the involvement of nonlinear processes for temporally overlapping pulses. These experiments extend previous two-colour studies on the indirect semiconductor silicon towards the direct wide band-gap semiconductor ZnO and further manifest the relevance of the ultrafast energy deposition for LIPSS formation. KW - Laser-induced periodic surface structures, LIPSS KW - Laser ablation KW - Surface plasmon polariton PY - 2017 DO - https://doi.org/10.1088/1402-4896/aa5578 SN - 1402-4896 SN - 0031-8949 VL - 92 IS - 3 SP - Article 034003, 1 EP - 7 PB - IOP CY - Bristol, UK AN - OPUS4-39082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - Crystallometric and projective properties of Kikuchi diffraction patterns N2 - Kikuchi diffraction patterns can provide fundamental information about the lattice metric of a crystalline phase. In order to improve the possible precision and accuracy of lattice parameter determination from the features observed in Kikuchi patterns, some useful fundamental relationships of geometric crystal-lography are reviewed, which hold true independently of the actual crystal symmetry. The Kikuchi band positions and intersections and the Kikuchi band widths are highly interrelated, which is illustrated by the fact that all lattice plane trace positions of the crystal are predetermined by the definition of only four traces. If, additionally, the projection centre of the gnomonic projection is known, the lattice parameter ratios and the angles between the basis vectors are fixed. A further definition of one specific Kikuchi band width is sufficient to set the absolute sizes of all lattice parameters and to predict the widths of all Kikuchi bands. The mathematical properties of the gnomonic projection turn out to be central to an improved interpretation of Kikuchi pattern data, emphasizing the importance of the exact knowledge of the projection centre. KW - EBSD KW - Crystallography KW - Kikuchi patterns KW - Projective geometry PY - 2017 DO - https://doi.org/10.1107/S1600576716017477 SN - 1600-5767 VL - 50 IS - Part 1 SP - 102 EP - 119 PB - International Union of Crystallography AN - OPUS4-39061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unnikrishnakurup, Sreedhar A1 - Rouquette, Sebastien A1 - Soulie, Fabien A1 - Fras, Gilles T1 - Estimation of heat flux parameters during static gas tungsten arc welding spot under argon shielding N2 - A multi-physics modelling of a static Gas Tungsten Arc Welding (GTAW) operation has been established in order to estimate the heat flux exchanged between the arc plasma and the work-piece. The heat flux was described with a Gaussian function where two parameters required to be estimated: process efficiency and radial distribution. An inverse heat transfer problem (ihtp) has been developed in the aim to estimate these parameters from experimental data. Levenberg-Marquardt algorithm was used as the regularization method in addition to an iterative process. The experiment consisted in a static spot weld with GTAW process. The weld spot was on for 5 s under Argon shielding gas, 2.4 mm pure tungsten electrode on a SS304L disc. Temperatures were measured with thermocouples and weld pool growth monitored with a high speed camera. The experimental data were used to solve the ihtp what led to values such as 0.7 for process efficiency and average radial distribution of 1.8 mm. KW - Gas tungsten arc welding KW - Numerical simulation of welding KW - Heat flux estimation KW - Inverse heat transfer problem PY - 2017 DO - https://doi.org/10.1016/j.ijthermalsci.2016.12.008 SN - ISSN 1290-0729 VL - 114 SP - 205 EP - 212 PB - Elsevier Masson SAS AN - OPUS4-38905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Philippen, Jan A1 - Guguschev, Christo A1 - Klimm, Detlef ED - Kuech, Thomas F. ED - Feigelson, Robert R. ED - Nakajima, K. ED - Stringfellow, G.B. T1 - Single crystal fiber growth of cerium doped strontium yttrate, SrY2O4:Ce3+ N2 - First single crystal fibers of cerium doped Strontium yttrate were fabricated using the laser-heated pedestal growth technique. Through thermodynamic Equilibrium calculations and by high-temperature mass spectrometry suitable growth conditions could be determined. The atmosphere played an important role during crystallization. It affected the composition shift, on the one hand, and the valence state of cerium, on the other hand. These dependencies can be explained by combining X-ray diffraction, elemental analysis, and optical spectroscopy. Crystallization in slightly reducing nitrogen atmosphere proved to be a reasonable choice, because evaporation is suppressed and trivalent cerium is stabilized. Strong green emission that depends on the Oxygen fugacity during crystallization could be excited using UV light. Optical properties of SrY2O4:Ce3+ were measured for the first time. KW - Laser heated pedestal growth KW - Oxides KW - Strontium yttrate KW - Single crystal fiber KW - LED phosphors PY - 2017 DO - https://doi.org/10.1016/j.jcrysgro.2016.11.033 SN - 0022-0248 SN - 1873-5002 VL - 459 SP - 17 EP - 22 PB - Elsevier CY - Amsterdam AN - OPUS4-39496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ho, Y.T. A1 - Adriani, G A1 - Beyer, Sebastian A1 - Nhan, P.-T. A1 - Kamm, R. D. A1 - Kah, J.C.Y. T1 - A facile method to probe the vascular permeability of nanoparticles in nanomedicine applications N2 - The effectiveness of nanoparticles (NP) in nanomedicine depends on their ability to extravasate from vasculature towards the target tissue. This is determined by their permeability across the endothelial barrier. Unfortunately, a quantitative study of the diffusion permeability coefficients (Pd) of NPs is difficult with in vivo models. Here, we utilize a relevant model of vascular-tissue interface with tunable endothelial permeability in vitro based on microfluidics. Human umbilical vein endothelial cells (HUVECs) grown in microfluidic devices were treated with Angiopoietin 1 and cyclic adenosine monophosphate (cAMP) to vary the Pd of the HUVECs monolayer towards fluorescent polystyrene NPs (pNPs) of different sizes, which was determined from image analysis of their fluorescence intensity when diffusing across the monolayer. Using 70 kDa dextran as a probe, untreated HUVECs yielded a Pd that approximated tumor vasculature while HUVECs treated with 25 μg/mL cAMP had Pd that approximated healthy vasculature in vivo. As the size of pNPs increased, its Pd decreased in tumor vasculature, but remained largely unchanged in healthy vasculature, demonstrating a trend similar to tumor selectivity for smaller NPs. This microfluidic model of vascular-tissue interface can be used in any laboratory to perform quantitative assessment of the tumor selectivity of nanomedicine-based systems. KW - Nanoparticle PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-397053 DO - https://doi.org/10.1038/s41598-017-00750-3 SN - 2045-2322 VL - 7 IS - 1 SP - Article 707, 1 EP - 13 PB - Macmillan AN - OPUS4-39705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nguyen, Thi Yen A1 - Roessler, Ernst A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - Control of organic polymorph formation: crystallization pathways in acoustically levitated droplets N2 - Theoretical and experimental studies indicate that crystal nucleation can take more complex pathways than expected on the ground of the classical nucleation theory. Among these pathways are the formation of pre-nucleation clusters and amorphous precursor phases. A direct in situ observation of the different pathways of nucleation from solution is challenging since the paths can be influenced by heterogeneous nucleation sites, such as container walls. Here, we provide insights into the crystallization process using the in situ combination of an acoustic levitator, Raman spectroscopy, and X-ray scattering. The contactless sample holder enables the observation of homogeneous crystallization processes and the detection of intermediates and final crystalline forms. We provide evidence for the existence of multiple pathways of nucleation based on the investigation of the crystallization of organic molecules from different solvents. Starting from a diluted solution, a supersaturation is reached during the experiment due to the evaporation of the solvent. The highly supersaturated solution reveals different pathways of crystallization. Depending on the degree of supersaturation either the thermodynamically stable or the metastable crystal form is observed. KW - Crystallization KW - In situ XRD KW - Polymorphism KW - Polyamorphism KW - Raman spectroscopy PY - 2017 DO - https://doi.org/10.1515/zkri-2016-1964 SN - 2194-4946 SN - 2196-7105 VL - 232 IS - 1-3 SP - 15 EP - 24 PB - De Gruyter CY - Berlin AN - OPUS4-39708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilrich, Thomas A1 - Wilrich, Cordula T1 - Der Brand des Zinkklumpens im Restmülleimer N2 - In dieser Veröffentlichung werden der Strafbefehl und das in der Revision erfolgte Urteil zu einem Unfall im Chemieunterricht diskutiert. Der Strafbefehl: Sie werden "beschuldigt, fahrlässig eine Räumlichkeit, die zeitweise dem Aufenthalt von Menschen dient, zu einer Zeit, in der Menschen sich dort aufzuhalten pflegen, in Brand gesetzt oder durch eine Brandlegung ganz oder teilweise zerstört, indem Sie, nachdem Sie in Ihrer Eigenschaft als Chemielehrer des X-Gymnasiums in Y am Morgen des vorgenannten Tages im Chemieunterricht Schülern ein Experiment vorgeführt hatten, bei dem Sie Zinkpulver mit Natronlauge reagieren ließen, gegen 9:20 Uhr die für das Experiment benutzten Gläser sowie den entstandenen Zinkklumpen im Chemievorbereitungsraum mit Säure neutralisierten sowie mit Wasser abspülten, den Zinkklumpen sodann jedoch einfach in einem Kunststoffmülleimer entsorgten, welcher sich dort entzündete, was zu einem Brand im Chemievorbereitungsraum führte, bei dem diverse Möbelstücke samt Laborutensilien durch das Feuer zerstört wurden, es zu lokalen Gebäudeschäden durch abgeplatzten Wand- und Deckenputz kam und die Räumlichkeiten großflächig durch Rauchgasniederschläge belastet wurden, was Sie als Chemielehrer aufgrund Ihrer besonderen Fachkenntnisse hätten vorhersehen können und müssen; die Kosten der notwendigen Sanierungsmaßnahmen betragen € 66.647,26". Sodann heißt es, dass "auf Antrag der Staatsanwaltschaft gegen Sie eine Geldstrafe von 50 Tagessätzen festgesetzt wird. Die Höhe eines Tagessatzes beträgt € 100,–, die Geldstrafe insgesamt mithin € 5.000,–". Das Urteil: Der Lehrer erhob gegen den Strafbefehl Einspruch und das Amtsgericht sprach ihn nach mündlicher Verhandlung mit Urteil vom 8. Juli 2015 frei. In der vorliegenden Veröffentlichung werden der Strafbefehl und das Urteil im Hinblick auf Pflichtwidrigkeit, Kausalität und Fahrlässigkeit diskutiert. Darüberhinaus wird besprochen, ob die zugrunde gelegte Arbeitsschutzvorschrift angemessen angewendet und vom Gericht korrekt interpretiert wurde. KW - Arbeitsschutz KW - Entsorgung gefährlicher Stoffe PY - 2017 DO - https://doi.org/10.37307/j.2365-7634.2017.04.10 SN - 2365-7626 IS - 4 SP - 176 EP - 178 PB - Erich Schmidt Verlag (ESV) CY - Berlin AN - OPUS4-39645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulz, K. A1 - Schmack, R. A1 - Klemm, H. W. A1 - Kabelitz, Anke A1 - Schmidt, T. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Mechanism and kinetics of hematite crystallization in air: Linking bulk and surface models via mesoporous films with defined nanostructure N2 - Iron can form numerous oxides, hydroxides, and oxide−hydroxides. Despite their relevance, many of the transformation processes between these phases are still poorly understood. In particular the crystallization of quasi-amorphous hydroxides and oxide−hydroxides is difficult to assess, since typical diffraction and scattering methods provide only sampleaveraged information about the crystallized phases. We report a new approach for the investigation of the crystallization of oxide−hydroxides. The approach relies on model-type films that comprise a defined homogeneous nanostructure. The nanostructure allows quantitative linking of Information obtained by bulk-averaging diffraction techniques (XRD, SAXS) with locally resolved information, i.e., Domain sizes (SEM, TEM, LEEM) and phase composition (SAED). Using time-resolved imaging and diffraction we deduce mechanism and kinetics for the crystallization of ferrihydrite into hematite. Hematite forms via nucleation of hematite domains and subsequent Domain growth that terminates only upon complete transformation. A Johnson−Mehl−Avrami−Kolmogorov model describes the kinetics over a wide temperature range. The derived understanding enables the first synthesis of ferrihydrite films with ordered mesoporosity and quantitative control over the films’ hematite and ferrihydrite content. KW - Iron oxide KW - Crystallization KW - Mesoporous films KW - Nanostructure PY - 2017 DO - https://doi.org/10.1021/acs.chemmater.6b05185 SN - 0897-4756 SN - 1520-5002 VL - 29 IS - 4 SP - 1724 EP - 1734 AN - OPUS4-39690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Hielscher, R. A1 - Winkelmann, Aimo T1 - Electron backscatter diffraction beyond the mainstream N2 - We present special applications of electron backscatter diffraction (EBSD) which aim to overcome some of the limitations of this technique as it is currently applied in the scanning electron microscope. We stress that the raw EBSD signal carries additional information which is useful beyond the conventional orientation determination. The background signal underlying the backscattered Kikuchi diffraction (BKD) patterns reflects the chemical composition and surface topography but also contains channeling-in information which is used for qualitative real-time orientation imaging using various backscattered electron signals. A significantly improved orientation precision can be achieved when dynamically simulated pattern are matched to the experimental BKD patterns. The breaking of Friedel’s rule makes it possible to obtain orientation mappings with respect to the point-group symmetries. Finally, we discuss the determination of lattice parameters from individual BKD patterns. Subgrain structure in a single quartz grain. The increased noise level in the left map reflects the lower precision of a standard orientation determination using band detection by the Hough transform. The right map results from the same experimental raw data after orientation refinement using a pattern matching approach. The colors correspond an adapted inverse pole figure color key with a maximum angular deviation of about 2° from the mean orientation. KW - Electron backscatter diffraction PY - 2017 DO - https://doi.org/10.1002/crat.201600252 SN - Online 1521-4079 VL - 52 IS - 1 SP - Special Issue - Article Number: UNSP 1600252, 1 EP - 24 PB - WILEY-VCH AN - OPUS4-37935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin, S. A1 - Walnsch, A. A1 - Nolze, Gert A1 - Leineweber, A. A1 - Léaux, F. A1 - Scheuerlein, C. T1 - The crystal structure of (Nb0.75Cu0.25)Sn-2 in the Cu-Nb-Sn system N2 - During the processing of superconducting Nb3Sn wire, several intermediate intermetallic phases including a previously encountered Cu-Nb-Sn phase show up. The yet unknown crystal structure of this phase is now identified by a combination of different experimental techniques and database search to be of the hexagonal NiMg2 type with a proposed composition of about (Nb0.75Cu0.25)Sn2. The structure determination started from an evaluation of the lattice parameters from EBSD Kikuchi patterns from quenched material suggesting hexagonal or orthorhombic symmetry. A database search then led to the hexagonal NiMg2 type structure, the presence of which was confirmed by a Rietveld analysis on the basis of high energy synchrotron X-ray powder diffraction data. Assuming a partial substitution of Nb in orthorhombic NbSn2 by Cu, the change of the valence electron concentration provokes a structural transformation from the CuMg2 type for NbSn2 to the NiMg2 type for (Nb0.75Cu0.25)Sn2. In the previous literature the (Nb0.75Cu0.25)Sn2 phase described here has occasionally been referred to as Nausite. KW - Electron backscatter diffraction KW - X-ray diffraction KW - Intermetallic compound KW - Structure solution KW - Superconductor PY - 2017 DO - https://doi.org/10.1016/j.intermet.2016.09.008 SN - 0966-9795 SN - 1879-0216 VL - 80 SP - 16 EP - 21 PB - Elsevier Ltd. AN - OPUS4-37874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Prinz, Julia A1 - Dathe, A. A1 - Merck, V. A1 - Stranik, O. A1 - Fritzsche, W. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Gold nanolenses self-assembled by DNA origami N2 - Nanolenses are self-similar chains of metal nanoparticles, which can theoretically provide extremely high field enhancements. Yet, the complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, DNA origami is used to self-assemble 10, 20, and 60 nm gold nanoparticles as plasmonic gold nanolenses (AuNLs) in solution and in billions of copies. Three different geometrical arrangements are assembled, and for each of the three designs, surface-enhanced Raman scattering (SERS) capabilities of single AuNLs are assessed. For the design which shows the best properties, SERS signals from the two different internal gaps are compared by selectively placing probe dyes. The highest Raman enhancement is found for the gap between the small and medium nanoparticle, which is indicative of a cascaded field enhancement. KW - DNA origami KW - SERS KW - Gold nanoparticles KW - Plasmonics PY - 2017 UR - http://pubs.acs.org/doi/pdf/10.1021/acsphotonics.6b00946 DO - https://doi.org/10.1021/acsphotonics.6b00946 SN - 2330-4022 VL - 4 IS - 5 SP - 1123 EP - 1130 AN - OPUS4-40587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -