TY - JOUR A1 - Adel-Khattab, D. A1 - Giacomini, F. A1 - Gildenhaar, R. A1 - Berger, G. A1 - Gomes, Cynthia A1 - Linow, Ulf A1 - Hardt, M. A1 - Peleska, B. A1 - Günster, Jens A1 - Stiller, M. A1 - Houshmand, A. A1 - Ghaffar, K. A1 - Gamal, A. A1 - El-Mofty, M. A1 - Knabe, C. T1 - Development of a synthetic tissue engineered three- dimensional printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro N2 - Over the last decade there have been increasing efforts to develop three-dimensional (3D) scaffolds for bone tissue Engineering from bioactive ceramics with 3D printing emerging as a promising technology. The overall objective of the present study was to generate a tissue engineered synthetic bone graft with homogenously distributed osteoblasts and mineralizing bone Matrix in vitro, thereby mimicking the advantageous properties of autogenous bone grafts and facilitating usage for reconstructing segmental discontinuity defects in vivo . To this end, 3D scaffolds were developed from a silica-containing calcium alkali orthophosphate, using, fi rst, a replica technique – the Schwartzwalder – Somers method – and, second, 3D printing, (i.e. rapid prototyping). The mechanical and physical scaffold properties and their potential to facilitate homogenous colonization by osteogenic cells and extracellular bone matrix formation throughout the porous scaffold architecture were examined. Osteoblastic cells were dynamically cultured for 7 days on both scaffold types with two different concentrations of 1.5 and 3 × 10⁹ cells/l. The amount of cells and bone matrix formed and osteogenic marker expression were evaluated using hard tissue histology, immunohistochemical and histomorphometric analysis. 3D-printed scaffolds (RPS) exhibited more micropores, greater compressive strength and silica release. RPS seeded with 3 × 10⁹ cells/l displayed greatest cell and extracellular Matrix formation, mineralization and osteocalcin expression. In conclusion, RPS displayed superior mechanical and biological properties and facilitated generating a tissue engineered synthetic bone graft in vitro, which mimics the advantageous properties of autogenous bone grafts, by containing homogenously distributed terminally differentiated osteoblasts and mineralizing bone matrix and therefore is suitable for subsequent in vivo implantation for regenerating segmental discontinuity bone defects. KW - Bone tissue engineering KW - Calcium alkali orthophosphate KW - Rapid prototyping KW - Scaffold KW - Mandible PY - 2017 DO - https://doi.org/10.1002/term.2362 SN - 1932-6254 SN - 1932-7005 VL - 12 IS - 1 SP - 44 EP - 58 PB - Wiley Online Library AN - OPUS4-40745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dutto, Paola A1 - Stickle, M. M. A1 - Pastor, M. A1 - Manzanal, D. A1 - Yague, A. A1 - Tayyebi, S. A1 - Lin, C. A1 - Elizalde, M. D. ED - Cervera, Miguel T1 - Modelling of fluidised geomaterials: the case of the Aberfan and the Gypsum tailings impoundment flowslides N2 - The choice of a pure cohesive or a pure frictional viscoplastic model to represent the rheological behaviour of a flowslide is of paramount importance in order to obtain accurate results for real cases. The principal Goal of the present work is to clarify the influence of the type of viscous model—pure cohesive versus pure frictional—with the numerical reproduction of two different real flowslides that occurred in 1966: the Aberfan flowslide and the Gypsum tailings impoundment flowslide. In the present work, a depth-integrated model based on the v-pw Biot–Zienkiewicz formulation, enhanced with a diffusion-like equation to account for the pore pressure Evolution within the soil mass, is applied to both 1966 cases. For the Aberfan flowslide, a frictional viscous model based on Perzyna viscoplasticity is considered, while a pure cohesive viscous model (Bingham model) is considered for the case of the Gypsum flowslide. The numerical approach followed is the SPH method, which has been enriched by adding a 1D finite difference grid to each SPH node in order to improve the description of the pore water evolution in the propagating mixture. The results obtained by the performed simulations are in agreement with the documentation obtained through the UK National Archive (Aberfan flowslide) and the International Commission of large Dams (Gypsum flowslide). KW - Aberfan flowslide KW - SPH KW - Landslide propagation modelling KW - Perzyna viscoplasticity PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-410493 DO - https://doi.org/10.3390/ma10050562 SN - 1996-1944 VL - 10 IS - 5 SP - 562, 1 EP - 562, 21 AN - OPUS4-41049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mushtaq, S. A1 - Steers, E.B.M. A1 - Barnhart, D. A1 - Churchill, G. A1 - Kasik, M. A1 - Richter, Silke A1 - Pfeifer, Jens A1 - Putyera, K. T1 - The production of doubly charged sample ions by “charge transfer and ionization” (CTI) in analytical GD-MS N2 - Normally, in analytical GD-MS, the doubly charged metallic ion signals from the sample are several orders of magnitude less than the corresponding singly charged signals. However, we have observed that using a neon plasma, the M++ signals of some elements, which have double ionization energies close to the first ionization energy of neon, are of the same order as the M+ signal. Doubly charged ions may be produced directly in the discharge cell by electron ionization (EI), and also by two electron Penning ionization (TEP), but these processes cannot explain the above effect. In this paper, we suggest that an additional process named as ‘Charge Transfer and Ionization’ (CTI) produces such ions either in their ionic ground state or in an excited state. To confirm that this process is typical of the discharges used in GD-MS and not an artefact of any particular form of cell and ion extraction system, we have carried out comprehensive experimental measurements using three different GD-MS instruments, viz., Nu Astrum, VG9000 and ELEMENT GD and our results provide clear evidence for CTI. This is the first time the process has been identified as an ionization process in analytical GD-MS. CTI must be differentiated from Asymmetric Charge Transfer (ACT), which is a “selective” process and requires a close energy match (e.g. ΔE < 0.5 eV for a strong effect). On the other hand, CTI is “non-selective” in the sense that a close energy match is not required (e.g. a strong effect is observed with ΔE ∼ 2 eV), although the process only occurs for a limited number of elements, depending on the plasma gas used and the total energy required to doubly ionize the metallic atom. KW - Titanium KW - Glow discharge processes KW - Doubly charged ions KW - The charge transfer and ionization process (CTI) KW - Krypton KW - Neon PY - 2017 DO - https://doi.org/10.1039/C6JA00415F SN - 0267-9477 SN - 1364-5544 VL - 32 IS - 9 SP - 1721 EP - 1729 PB - Royal Society of Chemistry AN - OPUS4-41108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Optimization of welding loads with narrow groove and application of modified spray arc process N2 - Current efforts for lightweight design result in a growing application of high-strength fine-grained structural steel in modern constructions, e.g. mobile cranes, with yield strength from 960 MPa. The design of welded structures and welding processes becomes more challenging with increasing material strength and elastic ratios. High residual stresses are able to diminish lifetime, load capacity and component safety and should be avoided. Recent analyses have shown strong influences of heat control and restraint of the weld due to arising reaction stresses, superimposing with local residual welding stresses. Modern inverter technologies allowed the development of numerous modified spray arc processes driven by power source manufacturers, which provide virtually similar features and several benefits, enabling welding of narrower seams with reduced weld volumes and total heat inputs. This research focuses on welding loads due to modified weld seams. The global reaction forces and moments and their superposition with local residual stresses in welded components due to external shrinkage restraints were investigated using a special testing facility and XRD. The restraint intensity, weld seam geometry and welding process were varied for statistical evaluations of resulting welding loads. When welding under restraint, a reduction of the weld seam volume causes significantly lower reaction stress levels. KW - Residual stresses KW - MAG welding KW - Restraint KW - High-strength steels KW - Process parameters PY - 2017 DO - https://doi.org/10.1007/s40194-017-0484-3 SN - 1878-6669 SN - 0043-2288 VL - 61 IS - 6 SP - 1077 EP - 1087 PB - Springer CY - Berlin Heidelberg AN - OPUS4-41071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kohler, C. A1 - Nikfalazar, M. A1 - Heunisch, Andreas A1 - Schulz, Bärbel A1 - Mikolajek, M. A1 - Rabe, Torsten A1 - Jakoby, R. A1 - Binder, J. T1 - Implementation of Ba0.6Sr0.4TiO3-ZnO-B2O3 based tunable microwave phase shifters in LTCC technology N2 - Tunable dielectric Ba0.6Sr0.4TiO3-ZnO-B2O3 thick-films were analyzed regarding their integration potential into the LTCC technology. Therefore, tunable loaded line phase shifters based on metal-insulator-metal varactors with single- and double- printed BST thick-films were fabricated and co-sintered inside a four layer LTCC module. Microstructural and chemical investigations showed a sufficient compatibility and adhesion between the silver, BST composite and LTCC layers and a resulting morphology depending on the processing route. The microwave characterization of the LTCC-embedded phase shifters revealed comparable results to phase shifters with the same design on alumina substrates. KW - Thick films KW - Dielectric materials KW - Electroceramics PY - 2017 DO - https://doi.org/10.1111/ijac.12687 SN - 1546-542X SN - 1744-7402 VL - 14 IS - 4 SP - 574 EP - 582 PB - Wiley CY - Hoboken, NY, USA AN - OPUS4-41086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiedmann, A. A1 - Weise, Frank A1 - Kotan, E. A1 - Müller, H. S. A1 - Meng, Birgit T1 - Effects of fatigue loading and alkali-silica reaction on the mechanical behaviour of pavement concrete N2 - The primary aim of this paper is to analyze the impact of mechanical pre-damage and alkali–silica reaction (ASR) on the fracture mechanical properties of pavement concrete. For this purpose, a four point bending test was applied to large format beams to produce a defined level of cyclic pre-damage. The fatigue-induced concrete degradation process was simultaneously recorded using a testing procedure specifically developed for the purpose. In addition, fatigue-induced cracks on extracted drilling cores were spatially visualized and quantified using micro X-ray 3D-computed tomography (3D-CT). The storage of the small-format test specimens, with and without cyclic pre-damage, in an ASR-conducive environment showed that pre-damage leads to an increase in ASR damage processes. Subsequent structural mechanical investigations on small format specimens with and without pre-damage show that fatigue loading and ASR significantly influence fracture mechanical parameters of the concrete. KW - Acoustic emissions analysis KW - Alkali-silica reaction KW - Concrete pavement KW - Fatigue loading KW - Fracture energy KW - Monitoring of damage KW - Tensile strength KW - Ultrasonic velocity PY - 2017 DO - https://doi.org/10.1002/suco.201600179 SN - 1751-7648 SN - 1464-4177 VL - 18 IS - 4 SP - 539 EP - 549 PB - Ernst & Sohn AN - OPUS4-41007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Przondziono, R. A1 - Timothy, J. J. A1 - Weise, Frank A1 - Krütt, Enno A1 - Breitenbücher, R. A1 - Meschke, G. A1 - Hofmann, M. T1 - Degradation in concrete structures due to cyclic loading and its effect on transport processes - Experiments and modeling N2 - According to the objectives of the research group 1498, this paper deals with degradation effects in concrete structures that are caused by cyclic flexural loading. The goal is to determine their influence on the fluid transport processes within the material on the basis of experimental results and numerical simulations. The overall question was, to which extent the ingress of externally supplied alkalis and subsequently an alkali-silica reaction are affected by such modifications in the microstructure. Degradation in the concrete microstructure is characterized by ultrasonic wave measurements as well as by microscopic crack analysis. Furthermore, experiments on the penetration behavior of water into the investigated materials were performed. The penetration behavior into predamaged concrete microstructures was examined by the classical Karsten tube experiment, nuclear magnetic resonance method, and time domain reflectometry techniques. In order to create an appropriate model of the material's degradation on the water transport, the Darcy law was applied to describe the flow in partially saturated concrete. Material degradation is taken into account by an effective permeability that is dependent on the state of degradation. This effective permeability is obtained by the micromechanical homogenisation of the flow in an Representative Elementary Volume (REV) with distributed ellipsoidal microcracks embedded in a porous medium. The data gained in the microscopic crack analysis is used as input for the micromechanical model. Finite element simulations for unsaturated flow using the micromechanical model were compared with the experimental results showing good qualitative and quantitative agreement. KW - Alkali ingress KW - Alkali-silica reaction KW - Computational model for unsaturated flow KW - Cyclic loading KW - Degradation KW - Micromechanics model KW - Transport processes PY - 2017 DO - https://doi.org/10.1002/suco.201600180 SN - 1751-7648 SN - 1464-4177 VL - 18 IS - 4 SP - 519 EP - 527 PB - Ernst & Sohn AN - OPUS4-41008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeegers, G. P. A1 - Steinhoff, R. F. A1 - Weidner, Steffen A1 - Zenobi, R. T1 - Evidence for laser-induced redox reactions in matrix-assisted laserdesorption/ionization between cationizing agents and target plate material: a study with polystyrene and trifluoroacetate salts N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is often applied to assess the dispersity and the end groups of synthetic polymers through the addition of cationizing agents. Here weaddress how these cation adducts are formed using polystyrene (PS) as a model polymer. We analyzed PSby MALDI-MS with a 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) as the matrix and a range of trifluoroacetate (TFA) salts as cationizing agents on a range of different targetplate materials (copper, 1.4301 stainless steel, aluminum, Inconel 625, Ti90/Al6/V4 and chromium-, gold-and silver-plated stainless steel). It was found that on a stainless steel substrate the metal cations Al+,Li+, Na+, Cu+and Ag+formed polystyrene adducts, whereas K+, Cs+, Ba2+, Cr3+, Pd2+, In3+, or their lower oxidation states, did not. For the copper and silver substrates, PS and DCTB adduct formation with cations liberated from these target plate materials was observed upon addition of a cationizing agent, which indicates the occurrence of redox reactions between the added TFA salts and the target plate material. Judging from their standard electrode potentials, these redox reactions would not normally occur, i.e.,they require an additional energy input, strongly suggesting that the observed redox reactions are laser-induced. Furthermore, copper granules were found to successfully sequester PS from a tetrahydrofuran(THF) solution, consistent with the view complex formation with the copper target plate can take place prior to the MALDI-MS measurement. KW - Polymer MALDI KW - Cationization KW - Polystyrene KW - Laser-induced redox reactions KW - Target plate material PY - 2017 DO - https://doi.org/10.1016/j.ijms.2016.10.007 SN - 1387-3806 SN - 1873-2798 VL - 416 SP - 80 EP - 89 PB - Elsevier B.V. AN - OPUS4-41146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Boin, M. A1 - Wimpory, Robert A1 - Kannengießer, Thomas A1 - Gibmeier, J. A1 - Schröpfer, Dirk T1 - Residual stresses of LTT welds in large-scale components N2 - Residual stresses of welds become more and more important influencing cold cracking as well as the fatigue life of welded components. Low transformation temperature (LTT) filler materials offer the opportunity to alter the residual stresses already during the welding process by means of ad- justed martensite phase transformation temperature (MS). In the current paper, welding residual stresses are studied putting the focus on MS while joining heavy steel sections with a thickness of 20 and 25 mm, respectively. The residual stress state was determined at the top surface using X-ray diffraction as well as in the bulk by neutron diffraction. The results com- pare the residual stresses present in a conventional weld and LTT welds when multi-pass welding of large-scale compo- nents was applied. Repeated phase transformation in the case of the LTT weld is more vital for the residual stresses present in the real-life-like joints. This accounts for the top surface in longitudinal direction but is most pronounced for the bulk of the welds. Detrimental tensile residual stresses are mainly re- duced in the bulk in comparison to a conventional filler wire even in multi-pass welds of thick steel sections. T2 - IIW AA 2016 CY - Melbourne, Australia DA - 10.07.2016 KW - LTT KW - Welding residual stress KW - Phase transformation KW - Interpass temperature PY - 2017 DO - https://doi.org/10.1007/s40194-017-0502-5 SN - 0043-2288 SN - 1878-6669 VL - 61 IS - 6 SP - 1089 EP - 1097 PB - Springer CY - Heidelberg AN - OPUS4-41169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn T1 - Scattering on scattering N2 - Ultrafast experiments can reveal the spatiotemporal dynamics of nanostructure formation via scattering in background-free optical dark-field microscopy. KW - Ultrafast microscopy KW - Scattering KW - Darkfield microscopy KW - Laser ablation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-411596 DO - https://doi.org/10.1038/lsa.2017.88 SN - 2047-7538 VL - 6 SP - e17088, 1 EP - 2 PB - Springer Nature AN - OPUS4-41159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel A1 - Wolthusen, Helmut T1 - Unusual Corrosion Behavior of 1.4542 Exposed a Laboratory Saline Aquifer Water CCS-Environment N2 - Differently heat treated coupons of 1.4542 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. Surface corrosion layers are homogeneous but unusually discontinuously ellipsoidal. After 8000 h at 100 bar maximum corrosion rate in the liquid phase is approximately 0.014 mm/year, with normalizing providing best corrosion resistance and approximately 0.003 mm/year in the supercritical phase where hardening+tempering at 670 °C leads to lowest corrosion rates. KW - CO2-storage KW - Supercritical CO2 KW - Steel KW - Pipeline KW - Corrosion KW - CCS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418472 DO - https://doi.org/10.1016/j.egypro.2017.03.1679 VL - 114 SP - 5229 EP - 5240 PB - Elsevier Ltd. AN - OPUS4-41847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taabache, Soraya A1 - Bertin, Annabelle T1 - Vesicles from amphiphilic dumbbells and Janus dendrimers: bioinspired self-assembled structures for biomedical applications N2 - The current review focuses on vesicles obtained from the self-assembly of two types of dendritic macromolecules, namely amphiphilic Janus dendrimers (forming dendrimersomes) and amphiphilic dumbbells. In the first part, we will present some synthetic strategies and the various building blocks that can be used to obtain dendritic-based macromolecules, thereby showing their structural versatility. We put our focus on amphiphilic Janus dendrimers and amphiphilic dumbbells that form vesicles in water but we also encompass vesicles formed thereof in organic solvents. The second part of this review deals with the production methods of these vesicles at the nanoscale but also at the microscale. Furthermore, the influence of various parameters (intrinsic to the amphiphilic JD and extrinsic—from the environment) on the type of vesicle formed will be discussed. In the third part, we will review the numerous biomedical applications of these vesicles of nano- or micron-size. KW - Janus dendrimers KW - Amphiphilic dumbbells KW - Self-assembled structures KW - Dendrimersomes KW - Artificial cells PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418245 DO - https://doi.org/10.3390/polym9070280 SN - 2073-4360 VL - 9 IS - 7 SP - Article 280, 1 EP - 36 AN - OPUS4-41824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hentrich, D. A1 - Taabache, Soraya A1 - Brezesinski, G. A1 - Lange, Nele A1 - Unger, Wolfgang A1 - Kübel, C. A1 - Bertin, Annabelle A1 - Taubert, A. T1 - A dendritic amphiphile for efficient control of biomimetic calcium phosphate mineralization N2 - The phase behavior of a dendritic amphiphile containing a Newkome-type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air–liquid interface. The amphiphile forms stable monomolecular films at the air–liquid interface on different subphases. Furthermore, the mineralization of calcium Phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and Phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High-resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano-needles aggregate into larger flake-like objects. KW - Dendritic amphiphile KW - Calcium phosphate KW - Biomineralization PY - 2017 DO - https://doi.org/10.1002/mabi.201600524 SN - 1616-5187 SN - 1616-5195 VL - 17 IS - 8 SP - Article 1600524, 1 EP - 14 AN - OPUS4-41825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stelzner, Ludwig A1 - Powierza, Bartosz T1 - Thermisch induzierter Feuchtetransport in HPC T1 - Thermally induced Moisture Transport in structure density High-performance Concrete N2 - Die Entwicklung von leistungsfähigen Fließmitteln in den letzten Jahrzehnten ermöglicht die Herstellung von Beton mit sehr geringem w/z-Wert, bei gleichzeitig guter Verarbeitbar-keit. Die Reduzierung des w/z-Wertes geht dabei mit einer Erhöhung der Festigkeit und einer Verdichtung der Gefü-gestruktur einher. Aufgrund der hohen Druckfestigkeit finden diese Hochleistungsbetone vermehrten Einsatz im Hoch-, Brücken-, und Tunnelbau. Unter Brandbeanspruchung neigen diese Hochleistungsbetone allerdings zu explosionsartigen Abplatzungen. Diese werden nach derzeitigem Stand auf thermomechanische und thermohydraulische Prozesse zurückgeführt. Letztere beruhen auf der Generierung hoher Wasserdampfdrücke in einseitig brandbeanspruchten Beton-bauteilen, die zum einen auf die geringe Permeabilität des Hochleistungsbetons und zum anderen auf die Bildung einer wassergesättigten Zone, der sogenannten „moisture clog“ zurückzuführen sind. Dabei spielen Verdampfungs- und Kondensationsvorgänge sowie der vorhandene Temperatur-gradient eine wichtige Rolle. Die Interaktion des Feuchtetra-nsportes mit den Gefügeveränderungen während der thermi-schen Beanspruchung soll im Rahmen weiterer Versuche eingehend untersucht werden. Zur Analyse des Feuchtetransports während der thermischen Beanspruchung wurden miniaturisierte Prüfkörper aus Hoch-leistungsbeton hergestellt, die mit Hilfe eines elektrischen Heizelements einseitig erwärmt wurden. Zur Sicherstellung eines eindimensionalen Wärme- und Feuchtetransportes ist der Betonprüfkörper mit einer speziellen Glaskeramik und einer Hochtemperaturwolle ummantelt. Simultan zur Erwär-mung werden eine Reihe röntgentomographischer Aufnah-men durchgeführt. Durch Differenzbildung aufeinanderfol-gender Aufnahmen können Dichteveränderungen lokal und zeitlich aufgelöst werden. Diese lassen Rückschlüsse auf Än-derungen der Feuchteverteilung im Prüfkörper während der Erwärmung zu. Parallel dazu werden Untersuchungen mittels NMR-Relaxometrie (nuclear magnetic resonance) vor und nach der thermischen Beanspruchung durchgeführt. Diese Prüfmethodologie ermöglicht es erstmals, die Veränderungen der Feuchteverteilung infolge thermischer Beanspruchung im Hochleistungsbeton von den Gelporen bis hin zu vorhande-nen Verdichtungsporen abzubilden. So zeigen erste Ergebnis-se, dass die gewählten Untersuchungsmethoden Veränderun-gen der Feuchteverteilung im Prüfkörper räumlich und zeitlich auflösen können. KW - Abplatzen KW - Spalling KW - Brand KW - Feuchtetransport KW - Hochleistungsbeton KW - Röntgen-3D-Computertomographie KW - NMR KW - Fire KW - Moisture clog KW - Moisture transport KW - HPC KW - HSC KW - X-ray CT PY - 2017 DO - https://doi.org/10.1002/best.201700022 SN - 0005-9900 SN - 1437-1006 VL - 112 IS - 7 SP - 486 EP - 486 PB - Ernst & Sohn CY - Berlin AN - OPUS4-41826 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meißner, G. A1 - Dirican, D. A1 - Jäger, Christian A1 - Braun, T. A1 - Kemnitz, E. T1 - Et3GeH versus Et3SiH: controlling reaction pathways in catalytic C–F bond activations at a nanoscopic aluminum chlorofluoride† N2 - Catalytic C–F bond activation reactions of mono- and polyfluoroalkanes at Lewis acidic amorphous aluminum chlorofluoride (ACF) are presented. The hydrogen sources Et3GeH or Et3SiH control the selectivity of the conversions. The immobilization of Et3GeH at ACF resulted in catalytic dehydrohalogenation reactions to yield olefins under very mild conditions. In contrast, if Et3SiH is immobilized at ACF, C–C coupling occured and the formation of Friedel–Crafts products was observed. MAS NMR spectroscopic studies revealed information about the surface binding of the substrates. KW - Vapor-phase hydrofluorination KW - Carbon-fluorine bonds KW - Vinyl fluoride KW - Phosphine-ligands KW - Room-temperature KW - Building-blocks KW - Etal-complexes KW - Germylium ions KW - Lewis-acids KW - Hydrodefluorination PY - 2017 DO - https://doi.org/10.1039/c7cy00845g SN - 2044-4753 SN - 2044-4761 VL - 7 IS - 15 SP - 3348 EP - 3354 PB - The Royal Society of Chemistry AN - OPUS4-41836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Böhning, Martin A1 - Oehler, H. A1 - Alig, I. A1 - Niebergall, Ute T1 - Environmental stress cracking of polyethylene high density (PE-HD) induced by liquid media – Validation and verification of the full-notch creep test (FNCT) T1 - Umgebungsinduzierte Spannungsrissbildung von Polyethylen- Werkstoffen hoher Dichte durch flüssige Medien – Validierung und Verifizierung des Kriechversuchs an Probekörpern mit umlaufender Kerbe N2 - The full-notch creep test (FNCT) is widely used to characterize the slow crack growth (SCG) behavior of polyolefin materials in “inert” media as well as effects of environmental stress cracking (ESC) in which the medium has decisive influence on damage mechanism and time to failure. The test is of greatest importance for pipe and blow molding types of polyethylene, high density (PE-HD). Usually the full-notch creep test is applied as a standardized testing method (ISO 16770) using a few universal liquid media, such as solutions of Arkopal N 100. In our study, selected relevant polyethylene, high density materials are investigated also in real media – practical formulations as well as representative pure chemicals – and influences of temperature and geometry of specimen and notch are explicitly addressed. Furthermore, the investigations comprise also the environmental stress cracking behavior of polyethylene, high density in media that are sorbed to a significant extent – examples are diesel and biodiesel – based on comparison with samples previously saturated with those media. Thus, also the underlying diffusion controlled sorption process has to be assessed before. The investigations were performed using a full-notch creep testing device with 12 individual sub-stations, each equipped with individual electronic stress and temperature control and continuous online monitoring of the specimen elongation. N2 - Der Kriechversuch an Probekörpern mit umlaufender Kerbe (FNCT) wird flächendeckend angewendet, um das Verhalten von Polyolefinen sowohl gegenüber langsamen Risswachstums (SCG) bei Kontakt mit „inerten“ Medien als auch gegenüber umgebungsbedingtem Spannungsrisswachstum (ESC), bei welchem das umgebende Medium entscheidenden Einfluss auf den Schädigungsmechanismus und die Standzeit hat, zu charakterisieren. Der Test ist von großer Bedeutung bei der Analyse von hochdichten Polyethylen-Typen, die als Rohr- und Blasformwerkstoffe angewendet werden – dabei besonders für Transport und Verpackung von Gefahrstoffen, aber auch für weitere Hochleistungsanwendungen. Üblicherweise wird der Kriechversuch an Probekörpern mit umlaufender Kerbe als Normmethode (ISO 16770) unter Verwendung einiger weniger universeller Modellflüssigkeiten, wie z. B. Arkopal N 100, durchgeführt. In dieser Studie werden ausgewählte, marktrelevante Polyethylen-Werkstoffe hoher Dichte in realen Medien – praktisch verwendete Gefahrgüter sowie repräsentative reine Chemikalien – untersucht und explizit die Einflüsse von Temperatur und Prüfkörper- sowie Kerbgeometrie adressiert. Weiterhin beinhalten die Untersuchungen die Analyse des umgebungsbedingten Spannungsriss-Verhaltens von Polyethylen hoher Dichte in Medien, die maßgeblich vom Werkstoff sorbiert sind – beispielsweise mit Kraftstoffen wie diesel und biodiesel – basierend auf dem Vergleich mit vorgesättigten Probekörpern. Der dabei vorliegende diffusionsgesteuerte Sorptionsprozess muss dementsprechend zuvor evaluiert werden. Alle Untersuchungen wurden mithilfe einer Kriechversuchsanlage an Probekörpern mit umlaufender Kerbe mit 12 Stationen durchgeführt, welche jeweils mit einer individuell ansteuerbaren elektronischen Spannungs- und Temperatursteuerung sowie fortwährender Online-Überwachung der Prüfkörperdehnung ausgestattet sind. KW - Full-notch creep test (FNCT) KW - Polyethylene (PE-HD) KW - Environmental stress cracking (ESC) KW - Slow crack growth (SCG) KW - Biodiesel PY - 2017 DO - https://doi.org/10.1002/mawe.201700065 SN - 1521-4052 SN - 0933-5137 VL - 48 IS - 9 SP - 846 EP - 854 PB - Wiley-VCH CY - Weinheim AN - OPUS4-41885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenreck, Thora A1 - Klein, M. A1 - Böllinghaus, Thomas T1 - Dynamic compressive behaviour of weld joints N2 - Materials used in military applications have to withstand multiple threats like ballistics and explosions. Thus, high-strength low alloyed (HSLA) steels are used. The main joining technique for metals is welding. Therefore, analysing the dynamic impact behaviour of high-strength welds is very important to fulfil these demands. Investigation of welds at high strain rates has rarely been conducted in the past. To determine the dynamic impact behaviour of hybrid laser-arc welds, the Split Hopkinson Pressure Bar (SHPB) technique was used. The base material was a quenched and tempered fine-grained armour steel with yield strength of 1100 MPa. First, a full hybrid laser-arc weld was investigated by extracting specimens consisting of weld metal and heat affected base material. The influence of two variables, the cooling time between 800 °C and 500 °C (t8/5) and strength of filler material, on the impact behaviour was studied. The cooling time t8/5 was varied by preheating to influence the microstructure in the HAZ and to analyse the effect on the hardness and dynamic compressive strength. Subsequent analysis to detail the original Investigation was carried out by dilatometer heat treatment of specimens to create homogenous subzones of the weld. These specimens have a homogenous microstructure of HAZ and were tested by SHPB to determine the stress-strain characteristics for the different microstructures of HAZ. The results of the weld specimen showed the effect of preheating and filler material strength on the dynamic compressive behaviour. The analysis of the different microstructures of the HAZ indicated that especially the tempered microstructure caused a reduction in dynamic compressive strength. KW - SHPB KW - Hybrid laser-arc weld KW - Dilatometry PY - 2017 DO - https://doi.org/10.1016/j.msea.2017.07.032 SN - 0921-5093 SN - 1873-4936 VL - 702 SP - 322 EP - 330 AN - OPUS4-41904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obaton, A-F. A1 - Fain, J. A1 - Djemaï, M. A1 - Meinel, Dietmar A1 - Léonard, Fabien A1 - Mahé, E. A1 - Lécuelle, B. A1 - Fouchet, J-J. A1 - Bruno, Giovanni T1 - In vivo XCT bone characterization of lattice structured implants fabricated by additive manufacturing N2 - Several cylindrical specimens and dental implants, presenting diagonal lattice structures with different cell sizes (600, 900 and 1200 µm) were additively manufactured by selective laser melting process. Then they were implanted for two months in a sheep. After removal, they were studied by Archimedes’ method as well as X-ray computed tomography in order to assess the penetration of bone into the lattice. We observed that the additive manufactured parts were geometrically conform to the theoretical specifications. However, several particles were left adhering to the surface of the lattice, thereby partly or entirely obstructing the cells. Nevertheless, bone penetration was clearly visible. We conclude that the 900 µm lattice cell size is more favourable to bone penetration than the 1200 µm lattice cell size, as the bone penetration is 84 % for 900 µm against 54 % for 1200 µm cell structures. The lower bone penetration value for the 1200 µm lattice cell could possibly be attributed to the short residence time in the sheep. Our results lead to the conclusion that lattice implants additively manufactured by selective laser melting enable better bone integration. KW - Biomedical engineering KW - Dentistry KW - Medical imaging KW - X-ray computer tomography PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418648 DO - https://doi.org/10.1016/j.heliyon.2017.e00374 SN - 2405-8440 IS - 3 SP - Article e00374, 1 EP - 21 PB - Elsevier Limited CY - 125 London Wall London, EC2Y 5AS United Kingdom AN - OPUS4-41864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Pourmand, P. A1 - Wolff, Dietmar A1 - Gedde, U.W. T1 - Influence of ageing on sealability of elastomeric O-rings N2 - At BAM, which is the federal institute for materials research and testing in Germany, it is one of our tasks to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes the assessment of the service lifetime of elastomeric seals that are part of the container lid system with regard to the requirements for long-term safety (40 years and more) of the containers. Therefore, we started an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) which are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) up to 1.5 years. In order to assess sealability, O-rings are aged in compression by 25 % (corresponding to the compression during service) between plates as well as in flanges that allow leakage rate measurements. For comparison, uncompressed O-rings are aged as well. Further methods characterising seal performance are compression stress relaxation (CSR) reflecting the loss of sealing force of a compressed seal over time, and compression set (CS) which represents the recovery behaviour of a seal after release from compression. Additionally, hardness is measured for information about the change of mechanical properties. The experimental results indicate that while hardness, CSR and CS show considerable degradation effects, the leakage rate stays relatively constant or even decreases until shrinkage combined with the loss of resilience of the aged seal leads to leakage. This demonstrates that static leakage rate, which is the only available direct seal performance criterion, has only limited sensitivity towards the degradation of the seal material. CS data is extrapolated using time-temperature shifts and Arrhenius graphs. An exemplary CS of 50 % would be reached after approx. 1.2, 17 and 29 years at 60 °C for HNBR, EPDM and FKM respectively. T2 - PolymerTec 2016 CY - Merseburg, Germany DA - 15.06.2016 KW - Compression KW - Leakage KW - Degradation KW - Rubber KW - Lifetime PY - 2017 DO - https://doi.org/10.1002/masy.201600157 SN - 1022-1360 SN - 1521-3900 VL - 373 IS - 1 SP - UNSP 1600157, 1 EP - 10 PB - WILEY-V C H VERLAG GMBH CY - Weinheim AN - OPUS4-40958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Volkmar A1 - Molnarne, Maria T1 - Flammability of gases in focus of European and US standards N2 - The presentation will discuss the difference between EU and US standards for the determination of explosion (flammability) limits and limiting oxygen concentration. Small differences observed in measured values can be traced back to the different test apparatuses and criteria. The discrepancies can be much greater in the case of limiting oxygen concentration because of the high amount of inert gases and the corresponding low laminar burning velocities. The paper describes some examples and the influence of the chosen criteria on the results. The European and US standards use the criteria of flame propagation in open test vessels and of pressure rise in closed ones. The examples discussed show that flame propagation is still possible at very small pressure rise values, as observed much below the pressure rise criterion of usual standards. However, flame propagation in a process plant can cause an accident or explosion and must be avoided. Therefore, the flame propagation criterion is recommended to be used in chemical safety engineering. The European safety database CHEMSAFE contains expertevaluated safety data for cases where the determination method and criteria are known. Flammability characteristics based on the pressure rise criterion may suffice in certain cases, e.g. for explosion protection in closed vessels without any connecting pipes. KW - Flammability KW - Limiting oxygen concentration KW - Test methods KW - Standards PY - 2017 DO - https://doi.org/10.1016/j.jlp.2017.05.012 SN - 0950-4230 SN - 1873-3352 VL - 48 SP - 297 EP - 304 PB - Elsevier CY - Amsterdam AN - OPUS4-40980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Gorris, H.H. T1 - Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies N2 - Lanthanide-doped photon-upconversion nanoparticles (UCNPs) have been the Focus of many Research activities in materials and life sciences in the last 15 years because of their potential to convert light between different spectral regions and their unique photophysical properties. To fully exploit the application potential of These facinating nanomaterials, a number of challenges have to be overcome, such as the low brightness, particularly of small UCNPs, and the reliable quantification of the excitation-power-density-dependent upconversion luminescence. In this series of critical Reviews, recent developments in the design, Synthesis, optical-spectroscopic characterization, and application of UCNPs are presented with Special Focus on bioanalysis and the life sciences. Here we guide the reader from the Synthesis of UCNPs to different concepts to enhance their luminescence, including the required optical-spectroscopic assessment to quantify material Performance; surface modification strategies and bioanalytical applications as well as selected examples of the use of UCNPs as reporters in different Assay formats are addressed in part II. Future Trends and challenges in the field of upconversion are discussed with Special emphasis on UCNP Synthesis and material characterization, particularly quantitative luminescence studies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield PY - 2017 DO - https://doi.org/10.1007/s00216-017-0499-z SN - 1618-2650 SN - 1618-2642 VL - 409 IS - 25 SP - 5855 EP - 5874 PB - Springer AN - OPUS4-41665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rudenko, A. A1 - Colombier, J.-P. A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Itina, T.E. T1 - Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin N2 - Periodic self-organization of matter beyond the diffraction limit is a puzzling phenomenon, typical both for surface and bulk ultrashort laser processing. Here we compare the mechanisms of periodic nanostructure formation on the surface and in the bulk of fused silica. We show that volume nanogratings and surface nanoripples having subwavelength periodicity and oriented perpendicular to the laser polarization share the same electromagnetic origin. The nanostructure orientation is defined by the near-field local enhancement in the vicinity of the inhomogeneous scattering centers. The periodicity is attributed to the coherent superposition of the waves scattered at inhomogeneities. Numerical calculations also support the multipulse accumulation nature of nanogratings formation on the surface and inside fused silica. Laser surface processing by multiple laser pulses promotes the transition from the high spatial frequency perpendicularly oriented nanoripples to the low spatial frequency ripples, parallel or perpendicular to the laser polarization. The latter structures also share the electromagnetic origin, but are related to the incident field interference with the scattered far-field of rough non-metallic or transiently metallic surfaces. The characteristic ripple appearances are predicted by combined electromagnetic and thermo-mechanical approaches and supported by SEM images of the final surface morphology and by time-resolved pump-probe diffraction measurements. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Nanostructures KW - Dielectrics KW - Electromagnetic scattering PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-421747 UR - https://www.nature.com/articles/s41598-017-12502-4 DO - https://doi.org/10.1038/s41598-017-12502-4 SN - 2045-2322 VL - 7 SP - Article 12306, 1 EP - 14 PB - Springer Nature AN - OPUS4-42174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Müller, Sabine A1 - Niederleithinger, Ernst A1 - Sieber, S. T1 - Reverse time migration: introducing a new imaging technique for ultrasonic measurements in civil engineering N2 - Ultrasonic echo testing is widely used in non-destructive testing in civil engineering to investigate concrete structures, to measure thickness, and to locate and characterise built-in components or inhomogeneities. Currently, synthetic aperture focusing techniques are mostly used for imaging. These algorithms are highly developed but have some limitations. For example, it is not possible to image the lower boundary of built-in components like tendon ducts or vertical reflectors. We adopted reverse time migration for non-destructive testing in civil engineering in order to improve the imaging of complicated structures in concrete. By using the entire wavefield, including waves reflected more than once, there are fewer limitations compared to synthetic aperture focusing technique algorithms. As a drawback, the required computation is significantly higher than that for the techniques currently used. Simulations for polyamide and concrete structures showed the potential for non-destructive testing. The simulations were followed by experiments at a polyamide specimen. Here, having acquired almost noise-free measurement data to test the algorithm, we were able to determine the shape and size of boreholes with sufficient accuracy. After these successful tests, we performed experiments at a reinforced concrete foundation slab. We obtained information from the data by reverse time migration, which was not accessible by traditional imaging. The imaging of the location and structure of the lower boundary of the concrete foundation slab was improved. Furthermore, vertical reflectors inside the slab were imaged clearly, and more flaws were found. It has been shown that reverse time migration is a step forward in ultrasonic testing in civil engineering. KW - Ultrasonic echo technique KW - Reverse time migration PY - 2017 DO - https://doi.org/10.3997/1873-0604.2017006 SN - 1569-4445 SN - 1873-0604 VL - 15 IS - 3 SP - 242 EP - 258 PB - Wiley AN - OPUS4-41921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batzdorf, Lisa A1 - Zientek, Nicolai A1 - Rump, Doreen A1 - Fischer, Franziska A1 - Maiwald, Michael A1 - Emmerling, Franziska T1 - Make and break - Facile synthesis of cocrystals and comprehensive dissolution studies N2 - Mechanochemistry is increasingly used as a ‘green alternative’ for synthesizing various materials including pharmaceutical cocrystals. Herein, we present the mechanochemical synthesis of three new cocrystals containing the API carbamazepine (cocrystals CBZ:Indometacin 1:1, CBZ:Benzamide 1:1, and CBZ:Nifedipine 1:1). The mechanochemical reaction was investigated in situ documenting a fast and complete reaction within one minute. Online NMR spectroscopy proved the direct influence of the dissolution behaviour of the coformers to the dissolution behaviour of the API carbamazepine. The dissolution behaviour of the organic cocrystals is compared to the behaviour of the pure drug indicating a general applicability of this approach for detailed cocrystal dissolution studies. KW - Cocrystals KW - Carbamazepine KW - Mechanochemistry KW - Powder diffraction KW - Online NMR spectroscopy PY - 2017 DO - https://doi.org/10.1016/j.molstruc.2016.11.063 SN - 0022-2860 SN - 1872-8014 VL - 1133 SP - 18 EP - 23 AN - OPUS4-38664 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Glaubitz, Steffen T1 - Influence of casting skin on fatigue lifetime of ferritic ductile cast iron N2 - The fatigue behaviour of cast iron is usually investigated on machined specimens. Components of cast iron, however, have a casting skin; therefore the investigation of the influence of the casting skin on the lifetime is of interest. To study this influence isothermal fatigue tests were carried out on heat-resisting spheroidal graphite cast iron EN GJS SiMo 4.05 in 4–point-bending set-up at 400 °C. Specimens with and without casting skin were investigated comparatively. The number of cycles to failure was significantly lower for specimens with casting skin. Metallographic investigations underline the reduction of lifetime caused by casting skin. KW - Cast iron KW - Casting skin KW - Fatigue KW - Lifetime PY - 2017 SN - 0025-5300 VL - 59 IS - 1 SP - 5 EP - 10 PB - Carl Hanser Verlag CY - München AN - OPUS4-38929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Rehmer, Birgit A1 - Gower, M. A1 - Baker, G. A1 - Lodeiro, M. A1 - Aktas, A. A1 - Monte, C. A1 - Adibekyan, A. A1 - Gutschwager, B. T1 - Defect characterisation of tensile loaded CFRP and GFRP laminates used in energy applications by means of infrared thermography N2 - The increased use of fibre reinforced plastic (FRP) composites for improved efficiency and reliability in energy related applications, e.g. wind and marine turbine blades, nacelles, oil and gas flexible risers, also increases the demand for innovative non-destructive testing technologies. In this contribution, results concerning the characterisation of CFRP and GFRP during and after quasi-static tensile loading are presented. It includes the measurement of optical properties in the infrared spectral range, tensile loading tests with the observation of the temperature distribution at one or both sides of the specimens using an infrared camera for the preparation and monitoring of intended natural defects, and active thermography inspections after tensile loading. It is shown that the defect preparation was successful. Thermographic monitoring during and active thermography testing after tensile loading enable the detection of the lateral extend of the generated defects. Differences between CFRP and GFRP materials are discussed. KW - Tensile loading KW - Fibre reinforced composites KW - Active and passive thermography KW - Emissivity PY - 2017 DO - https://doi.org/10.1080/17686733.2017.1334312 SN - 1768-6733 SN - 2116-7176 VL - 15 IS - 1 SP - 17 EP - 36 PB - Taylor and Francis CY - London AN - OPUS4-40968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Kromm, Arne A1 - Seyfert, Christoph A1 - Farahbod, Lena A1 - Haberland, Christoph A1 - Schneider, Judith Ann A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718 N2 - In the present study, samples fabricated by varying the deposition hatch length during selective laser melting of nickel based superalloy Inconel 718 were investigated. Microstructure and texture of these samples was characterized using scanning electron microscopy, combined with electron back-scattered diffraction, and residual stress assessment, using neutron diffraction method. Textured columnar grains oriented along the sample building direction were observed in the shorter hatch length processed sample. A ten-fold increase in the hatch length reduced the texture intensity by a factor of two attributed to the formation of finer grains in the longer hatch length sample. Larger gradients of transverse residual stress in the longer hatch length sample were also observed. Along the build direction, compressive stresses in the shorter hatch length and negligible stresses for the longer hatch length specimen were observed. Changes to the temperature gradient (G) in response to the hatch length variation, influenced the G to growth rate (R) ratio and the product G × R, in agreement with the microstructures and textures formed. For the residual stress development, geometry of the part also played an important role. In summary, tailored isotropy could be induced in Inconel 718 by a careful selection of parameters during selective laser melting. KW - Additive manufacturing KW - Nickel-based superalloy KW - Microstructure and texture KW - Residual stress KW - Electron back-scattered diffraction KW - Neutron diffraction PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0264127517308018 DO - https://doi.org/10.1016/j.matdes.2017.08.049 SN - 0264-1275 VL - 134 SP - 139 EP - 150 PB - Elsevier CY - Oxford, UK AN - OPUS4-41606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy T1 - A Fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration N2 - Using continuum damage mechanics (CDM) for lifetime prediction requires numerical integration of evolving damage until the onset of failure. The primary challenge for the simulation of structural fatigue failure is caused by the enormous computational costs due to cycle-by-cycle temporal integration throughout the whole loading history, which is in the order of 103–107 cycles. As a consequence, most approaches circumvent this problem and use empirical methods such as Wöhler curves. They are well suited for approximating the lifetime, but they are not capable to capture a realistic degradation of the material including redistribution of stresses. The main objective of the paper is to provide a technique for finite element (FE) simulations of structures under fatigue loading while reducing computational costs. A Fourier transformation-based temporal integration (FTTI) scheme is proposed, which adapts the conventional FE method for modeling the viscoplastic deterioration in a structure subjected to cyclic loading. The response fields are represented by a Fourier series which assumes a temporal scale separation: a microchronological (short time) scale arises from the oscillatory loading and a macrochronological (long time) scale is due to the slow material relaxation resulting from yielding and damage evolution. The original dynamic boundary value problem (BVP) is approximated by the stationary BVP on the microchronological scale. Alternation of the displacement field on the macrochronological scale is correlated with evolution of the history variables by means of a high order adaptive cycle jump method. Performance and significant acceleration of the FE simulations is demonstrated at different loading scenarios for a constitutive damage model where the progressive damage accumulation is driven by viscoplastic yielding. KW - Fatigue KW - Accelerated time integration KW - Continuum damage mechanics KW - Fourier series PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2017.03.015 SN - 0142-1123 SN - 1879-3452 VL - 100 IS - 1 SP - 215 EP - 228 PB - Elsevier Ltd. AN - OPUS4-39616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fedelich, Bernard A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Experimental and analytical investigation of the TMF-HCF lifetime behavior of two cast iron alloys N2 - The combined loading Thermomechanical Fatigue (TMF) with High Cycle Fatigue (HCF) has been experimentally investigated for two cast iron alloys. Both alloys contain globular graphite nodules but the first one has a ferritic structure while the second one has an austenitic crystal structure. In particular, the influences of the HCF frequency, of the HCF loading amplitude and of the location of the superposed HCF cycles have been investigated. It was observed that the HCF frequency has a limited impact on the fatigue life. On the other side, the HCF-strain amplitude has a highly non-linear influence on the fatigue life. The experimental results can be understood in terms of a fracture mechanics based damage mechanism: Cracks quickly initiate due to the TMF loading and the growth of the cracks up to a few mm controls the fatigue life. If HCF-loading cycles are superposed, cyclic crack propagation dramatically accelerates after a threshold has been reached. This threshold is regarded as controlling the fatigue life reduction. The previous ideas have been expressed in a model that can be very simply applied to estimate the fatigue life reduction ratio due to the superposed HCF cycles. It only contains two adjustable parameters and can be combined with any TMF life assessment model. T2 - 3rd International Workshop on Thermo-Mechanical Fatigue (TMF-Workshop 2016) CY - Berlin, Germany DA - 27.04.2016 KW - Thermomechanical Fatigue (TMF) KW - High Cycle Fatigue (HCF) KW - Cast iron KW - Fatigue assessment PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2016.11.013 SN - 0142-1123 SN - 1879-3452 VL - 99 IS - 2 (Special issue: Recent developments in thermo-mechanical fatigue) SP - 266 EP - 278 PB - Elsevier CY - Oxford AN - OPUS4-39810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuerlein, C. A1 - Uhlemann, Patrick A1 - Finn, Monika A1 - Lackner, F. A1 - Savary, F. T1 - Mechanical properties of the HL-LHC 11 T Nb3Sn magnet constituent materials N2 - A test campaign was launched to determine the mechanical properties of the High Luminosity-Large HadronCollider (HL-LHC) 11 T Nb3Sn magnet components. The results can be used to accurately represent the mechanical properties in finite elementmodels that predict the stress and strain distribution in these magnets. Particular attention is paid to anisotropic mechanical behavior of the different magnet materials. Static and dynamic test methods have been applied for determining elastic materials’ behavior, and highly accurate Young’s moduli are obtained with the nondestructive dynamic methods resonance and impulse excitation at ambient temperature and during in situ heat cycles. KW - Superconducting magnets KW - Young’s modulus KW - Resonance testing KW - Stress-strain behavior PY - 2017 DO - https://doi.org/10.1109/TASC.2016.2638046 SN - 1051-8223 SN - 1558-2515 VL - 27 IS - 4 SP - 1 EP - 7 PB - IEEE AN - OPUS4-39219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kühn, Hans-Joachim A1 - Rehmer, Birgit A1 - Skrotzki, Birgit T1 - Thermomechanical fatigue of heat-resistant austenitic cast iron EN-GJSA-XNiSiCr35-5-2 (Ni-Resist D-5S) N2 - TMF tests were carried out on EN-GJSA-XNiSiCr35-5-2 at constant minimum temperature (400 °C) and varying maximum temperatures (Tmax = 700 °C, 800 °C, 900 °C) with hold times of 180 s at Tmax and two phase angles (in-phase (IP), 180° out-of-phase (OP)). The results showed a comparable strength under OP- and IP-TMF loading. At Tmax = 700 °C and 900 °C, the lifetime in IP-tests was slightly longer than that of OP-tests, while it is vice versa at Tmax = 800 °C. The IP-tests at Tmax = 900 °C showed a similar lifetime as OP-tests at Tmax = 700 °C and 800 °C, which was unexpected for such a high testing temperature. All IP-tests at Tmax = 900 °C showed a continuous cyclic softening from the beginning on, which was different from all other testing conditions. Complementary metallographic investigations indicated that under this test condition, intergranular creep damage is present in the volume of the test pieces. T2 - 3rd International Workshop on Thermo-Mechanical Fatigue (TMF-Workshop 2016) CY - Berlin, Germany DA - 27.04.2016 KW - Cast iron KW - Cracks KW - Cyclic softening KW - Microscopy KW - Thermomechanical fatigue PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2017.01.009 SN - 0142-1123 SN - 1879-3452 VL - 99 IS - 2 (Special issue: Recent developments in thermo-mechanical fatigue) SP - 295 EP - 302 PB - Elsevier CY - Oxford AN - OPUS4-39680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omara, Shereen Shabaan A1 - Turky, G. A1 - Ghoneim, A. A1 - Thünemann, Andreas A1 - Abdel Rehim, M. H. A1 - Schönhals, Andreas T1 - Hyperbranched poly(amidoamine)/kaolinite nanocomposites: Structure and charge carrier dynamics N2 - An ex-situ approach was applied to prepare nanocomposites from hyperbranched poly(amidoamine) and modified kaolinite (Ka-DCA). The structure of the polymer and the corresponding nanocomposites was investigated by FTIR, DSC, SAXS and TEM. SAXS might suggest a partly exfoliated structure of the nanocomposites, which was supported by TEM. The molecular dynamics was studied by means of broadband dielectric spectroscopy (BDS). The dielectric spectra are dominated by a conductivity contribution at higher temperatures for all samples investigated. The obtained results further indicated that DC conductivity is increased by 4 orders of magnitude with increasing concentration of Ka-DCA nanofiller. Further, a significant separation between the conductivity relaxation time and that of segmental dynamics was observed. The decoupling phenomenon and the conductivity mechanism were discussed in detail. This study provides insights about the influence of the nanofiller on the structure and the conductivity contribution of nanocomposites of hyperbranched polymers including the decoupling phenomenon and fragility. KW - Hyperbranched polymers KW - Nanocomposites KW - Conductivity PY - 2017 DO - https://doi.org/10.1016/j.polymer.2017.06.017 SN - 0032-3861 VL - 121 SP - 64 EP - 74 PB - Elsevier Ltd. AN - OPUS4-40648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juling, S. A1 - Niedzwiecka, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Selve, S. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Krause, E. A1 - Lampen, A. T1 - Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects N2 - The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment. KW - Silver nanoparticles KW - Protein KW - Small-angle X-ray scattering KW - SAXS PY - 2017 DO - https://doi.org/10.1021/acs.jproteome.7b00412 SN - 1535-3893 SN - 1535-3907 VL - 16 IS - 11 SP - 4020 EP - 4034 PB - Americal Chemical Society AN - OPUS4-42688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lichtenstein, D. A1 - Meyer, T. A1 - Böhmert, L. A1 - Juling, S. A1 - Fahrenson, C. A1 - Selve, S. A1 - Thünemann, Andreas A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Braeuning, A. A1 - Lampen, A. T1 - Dosimetric quantification of coating-related uptake of silver nanoparticles N2 - The elucidation of mechanisms underlying the cellular uptake of nanoparticles (NPs) is an important topic in nanotoxicological research. Most studies dealing with silver NP uptake provide only qualitative data about internalization efficiency and do not consider NP-specific dosimetry. Therefore, we performed a comprehensive comparison of the cellular uptake of differently coated silver NPs of comparable size in different human intestinal Caco-2 cell-derived models to cover also the influence of the intestinal mucus barrier and uptake-specialized M-cells. We used a combination of the Transwell system, transmission electron microscopy, atomic absorption spectroscopy, and ion beam microscopy techniques. The computational in vitro sedimentation, diffusion, and dosimetry (ISDD) model was used to determine the effective dose of the particles in vitro based on their individual physicochemical characteristics. Data indicate that silver NPs with a similar size and shape show coating-dependent differences in their uptake into Caco-2 cells. The internalization of silver NPs was enhanced in uptake-specialized M-cells while the mucus did not provide a substantial barrier for NP internalization. ISDD modeling revealed a fivefold underestimation of dose–response relationships of NPs in in vitro assays. In summary, the present study provides dosimetry-adjusted quantitative data about the influence of NP coating materials in cellular uptake into human intestinal cells. Underestimation of particle effects in vitro might be prevented by using dosimetry models and by considering cell models with greater proximity to the in vivo situation, such as the M-cell model. KW - Silver nanoparticles KW - Small-angle X-ray scattering KW - Saxs PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.7b01851 SN - 0743-7463 VL - 33 IS - 45 SP - 13087 EP - 13097 PB - Americal Chemical Society AN - OPUS4-42875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Kang, Nianjun A1 - Wang, De-Yi A1 - Falkenhagen, Jana A1 - Thünemann, Andreas A1 - Schönhals, Andreas T1 - Structure–Property Relationships of Nanocomposites Based on Polylactide and Layered Double Hydroxides – Comparison of MgAl and NiAl LDH as Nanofiller N2 - Nanocomposites based on poly(L-lactide) (PLA) and organically modified Ni/Al layered double hydroxides (NiAl/LDHs) are prepared by melt blending and investigated by a combination of size exclusion chromatography, differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), wide-angle X-ray scattering, and broadband dielectric spectroscopy. A detailed comparison to the behavior of the corresponding MgAl/LDH–PLA nanocomposites is made. SAXS investigations show that the morphology of the NiAl/LDH–PLA nanocomposites is more intercalated compared to the MgAl/LDH based PLA nanocomposite, which is more exfoliated. The DSC investigation gives a different dependence of the degree of crystallization on the concentration of LDH for NiAl/LDH–PLA than for MgAl/LDH–PLA nanocomposite system. These differences are discussed taking the differences of the morphologies of both systems into account. Broadband dielectric spectroscopy reveals information about the molecular dynamics where essential differences are observed for all relaxation processes taking place in both systems which were related to the different morphologies. KW - Nanocomposites KW - Polylactide PY - 2017 DO - https://doi.org/10.1002/macp.201700232 SN - 1022-1352 SN - 1521-3935 VL - 218 IS - 20 SP - Article 1700232, 1 EP - 12 PB - Wiley-VCH Verlag AN - OPUS4-42597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Kästner, Claudia A1 - Krause, B. A1 - Meyer, T. A1 - Burel, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Estreal-Lopis, I. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Luch, A. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Impact of an artificial digestion procedure on aluminum-containing nanomaterials N2 - Aluminum has gathered toxicological Attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or Food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Smallangle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the singleparticle mode were employed to characterize two aluminumcontaining nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong Agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.7b02729 SN - 1520-5827 SN - 0743-7463 VL - 33 IS - 40 SP - 10726 EP - 10735 PB - Americal Chemical Society AN - OPUS4-42438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lichtenstein, D. A1 - Ebmeyer, J. A1 - Meyer, T. A1 - Behr, A.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Juling, J. A1 - Niemann, B. A1 - Fahrenson, C. A1 - Selve, S. A1 - Thünemann, Andreas A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Bräuning, A. A1 - Lampen, A. T1 - It takes more than a coating to get nanoparticles through the intestinal barrier in vitro N2 - Size and shape are crucial parameters which have impact on the potential of nanoparticles to penetrate cell membranes and epithelial barriers. Current research in nanotoxicology additionally focuses on particle coating. To distinguish between core- and coating-related effects in nanoparticle uptake and translocation, two nanoparticles equal in size, coating and charge but different in core material were investigated. Silver and iron oxide nanoparticles coated with poly(acrylic acid) were chosen and extensively characterized by small-angle x-ray scattering, nanoparticle tracing analysis and transmission electron microscopy (TEM). Uptake and transport were studied in the intestinal Caco-2 model in a Transwell System with subsequent elemental analysis. TEM and ion beam microscopy were conducted for particle visualization. Although equal in size, charge and coating, the behavior of the two particles in Caco-2 cells was different: while the internalized amount was comparable, only iron oxide nanoparticles additionally passed the epithelium. Our findings suggest that the coating material influenced only the uptake of the nanoparticles whereas the translocation was determined by the core material. Knowledge about the different roles of the particle coating and core materials in crossing biological barriers will facilitate toxicological risk assessment of nanoparticles and contribute to the optimization of pharmacokinetic properties of nano-scaled pharmaceuticals. KW - Silver KW - Nanoparticle KW - Polymer KW - Polyacrylic acid PY - 2017 DO - https://doi.org/10.1016/j.ejpb.2016.12.004 SN - 0939-6411 SN - 1873-3441 VL - 118 SP - 21 EP - 29 PB - Elsevier AN - OPUS4-41170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, P A1 - Balceris, C. A1 - Ludwig, F A1 - Posth, O A1 - Bogart, L. K. A1 - Szczerba, Wojciech A1 - Castro, A A1 - Nilsson, L A1 - Costo, R A1 - Gavilan, H A1 - Gonzalez-Alonso, D A1 - de Pedro, I A1 - Barquin, L. F. A1 - Johansson, C T1 - Distribution functions of magnetic nanoparticles determined by a numerical inversion method N2 - In the present study, we applied a regularized inversion method to extract the particle size, magnetic moment and relaxation-time distribution of magnetic nanoparticles from small-angle x-ray scattering (SAXS), DC magnetization (DCM) and AC susceptibility (ACS) measurements. For the measurements the particles were colloidally dispersed in water. At first approximation the particles could be assumed to be spherically shaped and homogeneously magnetized single-domain particles. As model functions for the inversion, we used the particle form factor of a sphere (SAXS), the Langevin function (DCM) and the Debye model (ACS). The extracted distributions exhibited features/peaks that could be distinctly attributed to the individually dispersed and non-interacting nanoparticles. Further analysis of these peaks enabled, in combination with a prior characterization of the particle ensemble by electron microscopy and dynamic light scattering, a detailed structural and magnetic characterization of the particles. Additionally, all three extracted distributions featured peaks, which indicated deviations of the scattering (SAXS), magnetization (DCM) or relaxation (ACS) behavior from the one expected for individually dispersed, homogeneously magnetized nanoparticles. These deviations could be mainly attributed to partial agglomeration (SAXS, DCM, ACS), uncorrelated surface spins (DCM) and/or intra-well relaxation processes (ACS). The main advantage of the numerical inversion method is that no ad hoc assumptions regarding the line shape of the extracted distribution functions are required, which enabled the detection of these contributions. We highlighted this by comparing the results with the results obtained by standard model fits, where the functional form of the distributions was a priori assumed to be log-normal shaped. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-429373 DO - https://doi.org/10.1088/1367-2630/aa73b4 SN - 1367-2630 VL - 19 SP - 073012, 1 EP - 073012, 19 PB - IOP Publ. Ltd. AN - OPUS4-42937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Terril, N. J. A1 - Thünemann, Andreas T1 - The modular small-angle X-ray scattering data correction sequence N2 - Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors. KW - Small-angle X-ray scattering KW - SAXS KW - Accuracy KW - Methodology KW - Data correction PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432114 DO - https://doi.org/10.1107/S1600576717015096 SN - 1600-5767 VL - 50 IS - 6 SP - 1800 EP - 1811 PB - International Union of Crystallography AN - OPUS4-43211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison N2 - This paper presents the first worldwide inter-laboratory comparison of small-angle X-ray scattering (SAXS) for nanoparticle sizing. The measurands in this comparison are the mean particle radius, the width of the size distribution and the particle concentration. The investigated sample consists of dispersed silver nanoparticles, surrounded by a stabilizing polymeric shell of poly(acrylic acid). The silver cores dominate the X-ray scattering pattern, leading to the determination of their radius size distribution using (i) the generalized indirect Fourier transformation method, (ii) classical model fitting using SASfit and (iii) a Monte Carlo fitting approach using McSAS. The application of these three methods to the collected data sets from the various laboratories produces consistent mean number- and volume-weighted core radii of Rn = 2.76 (6) nm and Rv = 3.20 (4) nm, respectively. The corresponding widths of the lognormal radius distribution of the particles were σn = 0.65 (1) nm and σv = 0.71 (1) nm. The particle concentration determined using this method was 3.0 (4) g l−1 or 4.2 (7) × 10−6 mol l−1. These results are affected slightly by the choice of data evaluation procedure, but not by the instruments: the participating laboratories at synchrotron SAXS beamlines, commercial and in-house-designed instruments were all able to provide highly consistent data. This demonstrates that SAXS is a suitable method for revealing particle size distributions in the sub-20 nm region (at minimum), out of reach for most other analytical methods. KW - SAXS KW - Small-angle X-ray scattering KW - Silver nanoparticles PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-422800 DO - https://doi.org/10.1107/S160057671701010X SN - 1600-5767 VL - 50 IS - 5 SP - 1280 EP - 1288 PB - (IUCr) International Union of Crystallography AN - OPUS4-42280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szczerba, Wojciech A1 - Costo, R. A1 - Veintemillas-Verdaguer, S. A1 - del Puerto Morales, M. A1 - Thünemann, Andreas T1 - SAXS analysis of single- and multi-core iron oxide magnetic nanoparticles N2 - This article reports on the characterization of four superparamagnetic iron oxide nanoparticles stabilized with dimercaptosuccinic acid, which are suitable candidates for reference materials for magnetic properties. Particles p1 and p2 are single-core particles, while p3 and p4 are multi-core particles. Small-angle X-ray scattering analysis reveals a lognormal type of size distribution for the iron oxide cores of the particles. Their mean radii are 6.9 nm (p1), 10.6 nm (p2), 5.5 nm (p3) and 4.1 nm (p4), with narrow relative distribution widths of 0.08, 0.13, 0.08 and 0.12. The cores are arranged as a clustered network in the form of dense mass fractals with a fractal dimension of 2.9 in the multi-core particles p3 and p4, but the cores are well separated from each other by a protecting organic shell. The radii of gyration of the mass fractals are 48 and 44 nm, and each network contains 117 and 186 primary particles, respectively. The radius distributions of the primary particle were confirmed with transmission electron microscopy. All particles contain purely maghemite, as shown by X-ray absorption fine structure spectroscopy KW - Superparamagnetic nanoparticles KW - Iron oxide KW - Reference materials KW - SAXS KW - Small-angle x-ray scattering KW - XANES KW - X-ray absorption near-edge structure KW - X-ray absorption fine structure PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395948 DO - https://doi.org/10.1107/S1600576717002370 SN - 1600-5767 VL - 50 IS - Part 2 SP - 481 EP - 488 PB - (IUCr) International Union of Crystallography AN - OPUS4-39594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Lichtenstein, Dajana A1 - Lampen, Alfonso A1 - Thünemann, Andreas T1 - Monitoring the fate of small silver nanoparticles during artificial digestion N2 - The report on the results of an in vitro digestion study of silver nanoparticles in presence and absenceof food. The particles were poly(acrylic acid) stabilized ultra-small silver nanoparticles with a radius of 3.1 nm and a relative size distribution width of 0.2. As food components oil, starch, skimmed milk powderand a mixture thereof were chosen. Aggregation of the particles was quantified with small-angle X-rayscattering in terms of log-normal radii distributions. Complete aggregation of the primary particles wasdetermined in the absence of food. In contrast, the presence of oil and starch initiates a disaggregationin the intestine. Only small aggregates of 6 nm radii and aggregation numbers of 7 were found in thepresence of milk powder. It prevents primary particles from etching in the gastric and intestinal juice.Our results indicate that the silver nanoparticles can pass the digestion process in a nanoscale form butundergo a strong and food-dependent transformation in their state of aggregation. KW - Small-angle X-ray scattering KW - SAXS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404099 DO - https://doi.org/10.1016/j.colsurfa.2016.08.013 SN - 0927-7757 SN - 1873-4359 VL - 526 SP - 76 EP - 81 PB - Elsevier B.V. AN - OPUS4-40409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mirtschin, Nikolaus A1 - Pretsch, T. T1 - Programming of one- and two-step stress recovery in a poly(ester urethane) N2 - This work demonstrates that phase-segregated poly(ester urethane) (PEU) with switching segments of crystallizable poly(1,4-butylene adipate) (PBA) can be programmed to generate two separate stress recovery events upon heating under constant strain conditions. For programming, two elongations are applied at different temperatures, followed by unloading and cooling. During the adjacent heating, two-step stress recovery is triggered. The results indicate that the magnitude of the stress recovery signals corresponds to the recovery of the two deformation stresses in reverse order. As demonstrated by further experiments, twofold stress recovery can be detected as long as the elongation at higher temperature exceeds the strain level of the deformation at lower temperature. Another finding includes that varying the lower deformation temperature enables a control over the stress recovery temperature and thus the implementation of so-called “temperature-memory effects”. Moreover, exerting only one elongation during programming enables a heating-initiated one-step stress recovery close to the deformation temperature. Based on these findings, such polymers may offer new technological opportunities in the fields of active assembly when used as fastening elements and in functional clothing when utilized for compression stockings. KW - DSC KW - Mechanical properties PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-393585 DO - https://doi.org/10.3390/polym9030098 SN - 2073-4360 VL - 9 IS - 3 SP - Article 98, 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-39358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mull, Birte A1 - Möhlmann, L. A1 - Wilke, Olaf T1 - Photocatalytic degradation of toluene, butyl acetate and limonene under UV and visible light with titanium dioxide-graphene oxide as photocatalyst N2 - Photocatalysis is a promising technique to reduce volatile organic compounds indoors. Titanium dioxide (TiO2) is a frequently-used UV active photocatalyst. Because of the lack of UV light indoors, TiO2 has to be modified to get its working range shifted into the visible light spectrum. In this study, the photocatalytic degradation of toluene, butyl acetate and limonene was investigated under UV LED light and blue LED light in emission test chambers with catalysts either made of pure TiO2 or TiO2 modified with graphene oxide (GO). TiO2 coated with different GO amounts (0.75%–14%) were investigated to find an optimum ratio for the photocatalytic degradation of VOC in real indoor air concentrations. Most experiments were performed at a relative humidity of 0% in 20 L emission test chambers. Experiments at 40% relative humidity were done in a 1 m³ emission test chamber to determine potential byproducts. Degradation under UV LED light could be achieved for all three compounds with almost all tested catalyst samples up to more than 95%. Limonene had the highest degradation of the three selected volatile organic compounds under blue LED light with all investigated catalyst samples. KW - Photocatalysis KW - Emission test chamber KW - Volatile organic compound KW - VOC KW - Degradation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-402955 DO - https://doi.org/10.3390/environments4010009 SN - 2076-3298 VL - 4 IS - 1 SP - Article 9, 1 EP - 9 PB - MDPI CY - Basel AN - OPUS4-40295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg A1 - Altmann, Korinna A1 - Wettmarshausen, Sascha A1 - Hidde, Gundula T1 - Coating of carbon fibers with adhesion-promoting thin polymer layers using plasma polymerization or electrospray ionization technique—A comparison N2 - Plasma polymers and electrospray-ionization (ESI) polymer layers are compared for most efficient adhesion promotion in carbon fiber-epoxy resin composites. The ultra-thin ESI layers (2–30 nm) of commercial poly(acrylic acid) and poly-(hydroxyethylmethacrylate) produce an significant increase of adhesion measured by single-fiber pull out tests. However, plasma Treatment has also advantages, such as simultaneous activation of the fiber substrate. Chemical structure and composition are rather far from the regular structure of commercial polymers as deposited by ESI processing. KW - Plasma polymers KW - Electrospray ionization polymers KW - Poly(acrylic acid) KW - Poly- (hydroxyethylmethacrylate) PY - 2017 DO - https://doi.org/10.1002/ppap.201600074 SN - 1612-8869 SN - 1612-8850 VL - 14 IS - 3 SP - e1600074-1 EP - 14 AN - OPUS4-40510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, M. S. S. A1 - Schartel, Bernhard A1 - Magalhães, F. D. A1 - Pereira, C. M. C. T1 - The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites N2 - The effectiveness of distinct fillers, from micro to nano-size scaled, on the fire behaviour of an epoxy resin and its carbon fibre reinforced composites was assessed by cone calorimetry. The performance was compared not only regarding the reaction to fire performance, but also in terms of thermal stability, glass transition temperature and microstructure. Regarding the fire reaction behaviour of nanofilled epoxy resin, anionic nanoclays and thermally oxidized carbon nanotubes showed the best results, in agreement with more compact chars formed on the surface of the burning polymer. For carbon fibre reinforced composite plates, the cone calorimeter results of modified resin samples did not show significant improvements on the heat release rate curves. Poorly dispersed fillers in the resin additionally caused reductions on the glass transition temperature of the composite materials. KW - Epoxy resin KW - Carbon fibre reinforced composite KW - Nanoclays KW - Carbon nanotubes KW - Flame retardants PY - 2017 DO - https://doi.org/10.1002/fam.2370 SN - 1099-1018 SN - 0308-0501 VL - 41 IS - 2 SP - 111 EP - 130 PB - Wiley & Sons, Ltd. AN - OPUS4-39085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Brouwers, H.J.H. A1 - Kühne, Hans-Carsten A1 - Meng, Birgit T1 - Interactions of polysaccharide stabilising agents with early cement hydration without and in the presence of superplasticizers N2 - Polysaccharides are incorporated into cement based Systems in order to modify the rheological properties. Typically, cellulose ethers, sphingan gums, guar gum or starch ethers are applied. Depending upon their chemistry, molecular architecture, and adsorption tendency, polysaccharides interact differently with the entire cementitious system. Some stabilising agents like diutan gum mainly affect the cementitious paste; other stabilising agents like starch tend to interact with the sand fraction and even with the coarse aggregates. Cellulose and guar gum shows more diverse performances. Typically stabilising admixtures like polysaccharides are used, when sophisticated rheological properties are adjusted. Therefore, polysaccharides are often used in combination with superplasticisers, which are added to reduce the yield stress of concrete. This can cause interactions, particularly when the stabilising Agent shows a strong tendency to adsorb on particle surfaces. Adsorptive stabilising agents may reduce the amount of adsorbed superplasticisers, thus affecting both viscosity and yield stress, while non-adsorptive stabilising agents mainly affect the plastic viscosity independently of the superplasticiser. Due to the strong influence of superplasticisers on the yield stress, influences of the stabilising agent on the yield stress retreat into the background, so that their major effect is an increase of the plastic viscosity. The paper provides a comprehensive overview of how different polysaccharide superplasticisers affect cementitious flowable systems and points out the challenges of the combined use of polysaccharides and superplasticisers. Based on rheometric experiments and observations of the hydration process, time dependent effects on the workability as well as of the hydration of cement are presented and discussed. KW - Concrete KW - Polysaccharides KW - Rheology KW - Stabilising agents KW - Starch KW - Sphingan PY - 2017 DO - https://doi.org/10.1016/j.conbuildmat.2016.11.022 SN - 0950-0618 SN - 1879-0526 VL - 139 SP - 584 EP - 593 PB - Elsevier AN - OPUS4-40597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Silbernagl, Dorothee A1 - Toepel, J. A1 - Sturm, Heinz A1 - Broughton, William J. A1 - Sassaki, G. L. A1 - Gorbushina, Anna T1 - Corrosive extracellular polysaccharides of the rock-inhabiting model fungus Knufia petricola N2 - Melanised cell walls and extracellular polymeric matrices protect rock-inhabiting microcolonial fungi from hostile environmental conditions. How extracellular polymeric substances (EPS) perform this protective role was investigated by following development of the model microcolonial black fungus Knufia petricola A95 grown as a sub-aerial biofilm. Extracellular substances were extracted with NaOH/formaldehyde and the structures of two excreted polymers studied by methylation as well as NMR analyses. The main polysaccharide (~ 80%) was pullulan, also known as α-1,4-; α-1,6-glucan, with different degrees of polymerisation. Αlpha-(1,4)-linked-Glcp and α-(1,6)-linked-Glcp were present in the molar ratios of 2:1. A branched galactofuromannan with an α-(1,2)-linked Manp main chain and a β-(1,6)-linked Galf side chain formed a minor fraction (~ 20%). To further understand the roles of EPS in the weathering of minerals and rocks, viscosity along with corrosive properties were studied using atomic force microscopy (AFM). The kinetic viscosity of extracellular K. petricola A95 polysaccharides (≈ 0.97 × 10-6 m2 s-1) ranged from the equivalent of 2% (w/v) to 5% glycerine, and could thus profoundly affect diffusion-dominated processes. The corrosive nature of rock-inhabiting fungal EPS was also demonstrated by its effects on the aluminium coating of the AFM cantilever and the silicon layer below. KW - Corrosion KW - EPS KW - Melanised microcolonial fungi (MCF) KW - Pullulan KW - Sub-aerial biofilms (SAB) KW - α-1,4- and α-1,6-glucans KW - AFM cantilever vibration KW - Nanoviscosity KW - Nanocorrosion of aluminium and silicon PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435910 DO - https://doi.org/10.1007/s00792-017-0984-5 SN - 1433-4909 SN - 1431-0651 VL - 22 IS - 2 SP - 165 EP - 175 PB - Springer CY - Berlin AN - OPUS4-43591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Hahn, Marc Benjamin A1 - Solumon, Tihomir A1 - Strum, Heinz A1 - Kunte, Hans-Jörg T1 - Ectoine can enhance structural changes in DNA in vitro N2 - Strand breaks and conformational changes of DNA have consequences for the physiological role of DNA. The natural protecting molecule ectoine is beneficial to entire bacterial cells and biomolecules such as proteins by mitigating detrimental effects of environmental stresses. It was postulated that ectoine-like molecules bind to negatively charged spheres that mimic DNA surfaces. We investigated the effect of ectoine on DNA and whether ectoine is able to protect DNA from damages caused by ultraviolet radiation (UV-A). In order to determine different isoforms of DNA, agarose gel electrophoresis and atomic force microscopy experiments were carried out with plasmid pUC19 DNA. Our quantitative results revealed that a prolonged incubation of DNA with ectoine leads to an increase in transitions from supercoiled (undamaged) to open circular (single-strand break) conformation at pH 6.6. The effect is pH dependent and no significant changes were observed at physiological pH of 7.5. After UV-A irradiation in ectoine solution, changes in DNA conformation were even more pronounced and this effect was pH dependent. We hypothesize that ectoine is attracted to the negatively charge surface of DNA at lower pH and therefore fails to act as a stabilizing agent for DNA in our in vitro experiments. KW - Ectoine KW - DNA KW - UV radiation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-413139 DO - https://doi.org/10.1038/s41598-017-07441-z VL - 7 IS - 1 SP - Article 7170, 1 EP - 10 AN - OPUS4-41313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Meyer, Susann A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz A1 - Kunte, Hans-Jörg T1 - Ectoine protects DNA from damage by ionizing radiation N2 - Ectoine plays an important role in protecting biomolecules and entire cells against environmental stressors such as salinity, freezing, drying and high temperatures. Recent studies revealed that ectoine also provides effective protection for human skin cells from damage caused by UV-A radiation. These protective properties make ectoine a valuable compound and it is applied as an active ingredient in numerous pharmaceutical devices and cosmetics. Interestingly, the underlying mechanism resulting in protecting cells from radiation is not yet fully understood. Here we present a study on ectoine and its protective influence on DNA during electron irradiation. Applying gel electrophoresis and atomic force microscopy, we demonstrate for the first time that ectoine prevents DNA strand breaks caused by ionizing electron radiation. The results presented here point to future applications of ectoine for instance in cancer radiation therapy. KW - Plasmid DNA pUC19 KW - Electron irradiation 30 [kV] KW - Effective irradiation dose 0.2-16 [Gy] KW - Gel electrophoresis KW - AFM intermittent contact KW - Radioprotector ectoine KW - Compatible solute PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-428287 DO - https://doi.org/10.1038/s41598-017-15512-4 SN - 2045-2322 VL - 7 IS - 1 SP - 15272, 1 EP - 15272, 7 PB - Nature AN - OPUS4-42828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -