TY - JOUR A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Hannemann, Andreas A1 - Friedersdorf, Peter A1 - Kannengießer, Thomas A1 - Gibmeier, J. T1 - In-situ load analysis in multi-run welding using LTT filler materials JF - Welding in the World - The International Jounral of Materials Joining N2 - Modifying the level of mostly detrimental welding residual stresses already during the welding process would be highly attractive as time- and cost-consuming post processing may be prevented. The nature of stress buildup during welding-associated cooling is highly affected by phase transformations. Up to now, it is not clear in which way this is applicable to real component welding exhibiting high shrinkage restraint and complex heat input. In this study, two different low transformation temperature (LTT) alloys have been investigated concerning the stress development in restrained multi-run butt welding in order to evaluate the potential of stress reduction. Pulsed gas metal arc welding (P-GMAW) welding was executed on a testing facility designed to simulate real lifelike restraint conditions of component weldments. The effect of reducedMS-temperatures and the heat control on the globally acting stresses was monitored by in-situ measurement of the reaction forces during welding fabrication. Additional local residual stress measurements allowed analyzing global as well as local loading of the welded construction. Although phase transformation has a significant influence on unloading the joint during each weld pass, the reaction stress upon cooling to room temperature seems to be determined mainly by the heat input. On the surface, low longitudinal residual stresses were observed in case of LTT whereas transverse residual stresses are less affected. T2 - 69th IIW Annual Assembly and International Conference CY - Melbourne, Australia DA - 10.07.2016 KW - Phase transformation temperature KW - Residual stress KW - Welding KW - Dilution KW - Restraint PY - 2016 DO - https://doi.org/10.1007/s40194-016-0373-1 SN - 0043-2288 VL - 60 IS - 6 SP - 1159 EP - 1168 PB - Springer CY - Heidelberg AN - OPUS4-37892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Optimization of welding loads using modified spray arc process N2 - Current efforts for lightweight design result in a growing application of high-strength fine-grained structural steel in modern steel constructions, e.g. mobile cranes, with yield strength from 960 MPa. The design of welded structures and the welding process become more challenging with increasing material strength due to higher elastic ratios. The formation of high residual stresses, which are able to diminish lifetime, load capacity and component safety, has to be avoided. Recent numerical and experimental analyses have shown a strong influence of the heat control and the rigidity of the weld on the welding stresses. Global reaction stresses due to an external shrinkage restraint superimpose with local residual stresses in the weld seam. Modern inverter technologies allowed the development of numerous modified spray arc processes driven by the power source manufactures with almost equal characteristics. They provide several well-known technical and economic benefits, like the possibility of welding narrower seam configurations. As a result a smaller weld volume, total heat input and, therefore, reduced welding stresses are achievable. This research focuses on the welding loads due to modified weld seams. The global reaction forces in welded components due to an external shrinkage restraint were investigated in a special in-house developed testing facility. Additionally, the superposition of the local residual stresses, global stresses and bending moments were analysed with the help of X-ray diffraction. The intensity of the restraint, the weld seam configuration and the weld process (transitional arc and modified spray arc) were varied for a statistical evaluation of the resulting welding loads. It was observed that under restraint a smaller weld seam volume affects reduced reaction stresses. T2 - IIW Intermediate Meeting, C-IIA CY - Madrid, Spain DA - 29.02.2016 KW - Process parameters KW - Residual stresses KW - MAG Welding KW - Restraint KW - High-strength steels PY - 2016 AN - OPUS4-38785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroepfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Optimization of welding loads using modified spray arc process N2 - Current efforts for lightweight design result in a growing application of high-strength fine-grained structural steel in modern steel constructions, e.g. mobile cranes, with yield strength from 960 MPa. The design of welded structures and the welding process become more challenging with increasing material strength due to higher elastic ratios. The formation of high residual stresses, which are able to diminish lifetime, load capacity and component safety, has to be avoided. Recent numerical and experimental analyses have shown a strong influence of the heat control and the rigidity of the weld on the welding stresses. Global reaction stresses due to an external shrinkage restraint superimpose with local residual stresses in the weld seam. Modern inverter technologies allowed the development of numerous modified spray arc processes driven by the power source manufactures with almost equal characteristics. They provide several well-known technical and economic benefits, like the possibility of welding narrower seam configurations. As a result a smaller weld volume, total heat input and, therefore, reduced welding stresses are achievable. This research focuses on the welding loads due to modified weld seams. The global reaction forces in welded components due to an external shrinkage restraint were investigated in a special in-house developed testing facility. Additionally, the superposition of the local residual stresses, global stresses and bending moments were analysed with the help of X-ray diffraction. The intensity of the restraint, the weld seam configuration and the weld process (transitional arc and modified spray arc) were varied for a statistical evaluation of the resulting welding loads. It was observed that under restraint a smaller weld seam volume affects reduced reaction stresses. T2 - IIW Annual Assembly 2016 CY - Melbourne, Australia DA - 10.07.2016 KW - Process parameters KW - Residual stresses KW - MAG Welding KW - Restraint KW - High-strength steels PY - 2016 AN - OPUS4-38787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -