TY - CONF A1 - Heßmann, Jennifer A1 - Hilgenberg, Kai A1 - Bachmann, Marcel T1 - Joining dissimilar materials a new approach based on laser beam welding and melt displacement by electromagnetic forces N2 - In order to reduce weight of vehicles, the interest in multi-material-design has been growing within the last few years. For vehicles the combination of steel and aluminium alloys offers the most promising compromise between weight, strength and formability. Thermal joining of these dissimilar materials is still a challenge to overcome. A possible approach is a new joining technology, whereby a combination of laser beam welding and contactless induced electromagnetic forces are used to displace the generated melt of one joining partner into a notch of the other. This paper presents the working principle and shows numerical analyses to improve the understanding of this joining process. The simulations help to calculate the thermal development of the joining partners, which is important for the formation of intermetallic phases. Furthermore, the calculation of the time required for a complete displacement is possible. The numerical results are validated by experimental results. T2 - LiM 2021 CY - Online meeting DA - 21.06.2021 KW - Joining dissimilar materials KW - Laser beam welding KW - Electromagnetic forces KW - Steel and aluminium PY - 2021 AN - OPUS4-52977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Gornushkin, Igor B. A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - In-situ Prozessüberwachung beim Laser-Pulver-Auftragschweißen (LPA) mittels Thermografie, optischer Emissionsspektroskopie (OES) und Schallemissionsanalyse (SEA) N2 - Vor allem in den letzten Jahren ist das Interesse der Industrie an der additiven Fertigung deutlich gestiegen. Die Vorteile dieser Verfahren sind zahlreich und ermöglichen eine ressourcenschonende, kundenorientierte Fertigung von Bauteilen, welche zur stetigen Entwicklung neue Anwendungsbereiche und Werkstoffe führen. Aufgrund der steigenden Anwendungsfälle, nimmt auch der Wunsch nach Betriebssicherheit unabhängig von anschließenden kostenintensiven zerstörenden und zerstörungsfreien Prüfverfahren zu. Zu diesem Zweck werden im Rahmen des von der BAM durchgeführten Themenfeldprojektes „Prozessmonitoring in Additive Manufacturing“ verschiedenste Verfahren auf ihre Tauglichkeit für den in-situ Einsatz bei der Prozessüberwachung in der additiven Fertigung untersucht. Hier werden drei dieser in-situ Verfahren, die Thermografie, die optische Emissionsspektroskopie und die Schallmissionsanalyse für den Einsatz beim Laser-Pulver-Auftragschweißen betrachtet. T2 - 41. Assistentenseminar der Füge- und Schweißtechnik CY - Magdeburg, Germany DA - 02.09.2020 KW - Laser-Pulver-Auftragschweißen (LPA) KW - Thermographie KW - Optische Emissionsspektroskopie (OES) KW - Schallemissionsanalyse (SEA) PY - 2021 SN - 978-3-96144-141-9 VL - 370 SP - 132 EP - 140 PB - DVS MEdia CY - Düsseldorf AN - OPUS4-53967 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Thermography and optical emission spectroscopy: Simultaneous temperature measurement during the LMD process N2 - For metal-based additive manufacturing, sensors and measuring systems for monitoring of the energy source, the build volume, the melt pool and the component geometry are already commercially available. Further methods of optics, spectroscopy and non-destructive testing are described in the literature as suitable for in-situ application, but there are only a few reports on practical implementations. Therefore, a new BAM project aims to develop process monitoring methods for the in-situ evaluation of the quality of additively manufactured metal components. In addition to passive and active thermography, this includes optical tomography, optical emission and absorption spectroscopy, eddy current testing, laminography, X-ray backscattering and photoacoustic methods. These methods are used in additive manufacturing systems for selective laser melting, laser metal deposition and wire arc additive manufacturing. To handle the sometimes huge amounts of data, algorithms for efficient preprocessing are developed and characteristics of the in-situ data are extracted and correlated to defects and inhomogeneities, which are determined using reference methods such as computer tomography and metallography. This process monitoring and fusion of data of different measurement techniques should result in a significant reduction of costly and time-consuming, destructive or non-destructive tests after the production of the component and at the same time reduce the production of scrap. Here, first results of simultaneous measurements of optical emission spectroscopy and thermography during the laser metal deposition process using 316L as building material are presented. Temperature values are extracted from spectroscopic data by fitting of blackbody emission spectra to the experimental data and compared with results from a thermographic camera. Measurements with and without powder flow reveal significant differences between welding at a pristine metal surface and previously melted positions on the build plate, illustrating the significant influence of the partial oxidation of the surface during the first welding process on subsequent welding. The measurement equipment can either be mounted stationary or following the laser path. While first results were obtained in the stationary mode, future applications for online monitoring of the build of whole parts in the mobile mode are planned. This research was funded by BAM within the focus area Material. T2 - 2nd international congress on welding, additive manufacturing and associated non-destructive testing CY - Metz, France DA - 05.06.2019 KW - Additive manufacturing KW - Laser metal deposition KW - Thermography KW - Optical emission spectroscopy KW - Process monitoring PY - 2019 AN - OPUS4-48228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Maierhofer, Christiane T1 - Unraveling thermal radiation by multispectral thermography: Real temperatures in LMD N2 - Additive manufacturing of metals offers the opportunity to build parts with a high degree of complexity without additional costs, opening a new space for design optimization. However, the processes are highly complex and due to the rapid thermal cycles involved, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine the formation of internal stresses and the microstructure, in-process spatially resolved measurements of the part temperature are needed. If the emissivity of the inspected part is known, its thermodynamic temperature can be reconstructed by a suited radiometric model. However, in additive manufacturing of metals, the emissivity of the part surface is strongly inhomogeneous and rapidly changing due to variations of, e.g., the degree of oxidation, the material state and temperature. Thus, here, the applicability of thermography in the determination of thermodynamic temperatures is limited. However, measuring the process thermal radiation at different wavelengths simultaneously enables one to separate temperature and emissivity spatially resolved to obtain further insight into the process. Here, we present results of an initial study using multispectral thermography to obtain real temperatures and emissivities in the powderfree LMD process. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 AN - OPUS4-52514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Process monitoring in LBM using thermography and optical tomography N2 - Additive manufacturing (AM) opens the route to a range of novel applications. However, the complexity of the manufacturing process poses a challenge to produce defect-free parts with a high reliability. Since process dynamics and resulting microstructures of AM parts are strongly influenced by the involved temperature fields and cooling rates, thermography is a valuable tool for process monitoring. Another approach to monitor the energy input into the part during process is the use of optical tomography. Common visual camera systems reach much higher spatial resolution than infrared thermography cameras, whereas infrared thermography provides a much higher temperature dynamic. Therefore, the combined application increases the depth of information. Here, we present first measurement results using a laser beam melting setup that allows simultaneous acquisition of thermography and optical tomography from the same point of view using a beam splitter. A high-resolution CMOS camera operating in the visible spectral range is equipped with a near infrared bandpass filter and images of the build plate are recorded with long-term exposure during the whole layer exposing time. Thus, areas that reach higher maximum temperature or are at elevated temperature for an extended period of time appear brighter in the images. The used thermography camera is sensitive to the mid wavelength infrared range and records thermal videos of each layer exposure at an acquisition rate close to 1 kHz. As a next step, we will use computer tomographic data of the built part as a reference for defect detection. This research was funded by BAM within the focus area Materials. T2 - 3rd International Symposium Additive Manufacturing (ISAM 2019) CY - Dresden, Germany DA - 30.01.2019 KW - Additive manufacturing KW - Laser beam melting KW - Thermography KW - Optical Tomography PY - 2019 AN - OPUS4-47299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Kranzmann, Axel A1 - Nolze, Gert A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Ageing in additively manufactured metallic components: from powder to mechanical failure” an overview of the project agil N2 - An overview of the BAM funed Focus Area Materials Project "AGIL" will be presented. AGIL focussed on the stdiy of the ageing characteristics of additively manufactured austenitic stainless steel with a "powder to mechanical failure" Approach. Recent Highlights are presented and a perspective for future studies. T2 - Workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Residual stress KW - Additive Manufacturing KW - Non-destructive testing KW - Microstructure characterisation KW - Tensile testing KW - Fatigue KW - Crystal Plasticity Modelling KW - Crack propagation PY - 2019 AN - OPUS4-49823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Pittner, Andreas A1 - Günster, Jens A1 - Gornushkin, Igor B. A1 - Pelkner, Matthias A1 - Ehlers, Henrik A1 - Heckel, Thomas A1 - Zscherpel, Uwe A1 - Seeger, Stefan A1 - Bruno, Giovanni T1 - ProMoAM - Verfahrensentwicklung für das Prozessmonitoring in der additiven Fertigung N2 - Verfahren zum in-situ Monitoring der Prozess- und Bauteilparameter sollen Fehlstellen und Inhomogenitäten bereits während der Fertigung nachweisen und zukünftig auch die Regelung der Prozessparameter ermöglichen. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control, Berlin Partner Workshop CY - Berlin, Germany DA - 12.09.2018 KW - Additive Fertigung KW - Prozessmonitoring KW - ProMoAM PY - 2018 AN - OPUS4-46300 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in metal AM: Comparison of high-speed NIR thermography and MWIR thermography N2 - Additive manufacturing (AM) opens the route to a range of novel applications.However, the complexity of the manufacturing process poses a challenge for the production of defect-free parts with a high reliability. Since process dynamics and resulting microstructures of AM parts are strongly influenced by the involved temperature fields, thermography is a valuable tool for process surveillance. The high process temperatures in metal AM processes allow one to use cameras usually operating in the visible spectral range to detect the thermally emitted radiation from the process. In our work, we compare the results of first measurements during the manufacturing processes of a commercial laser metal deposition (LMD) setup and a laser beam melting (LBM) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - Additive Manufacturing Benchmarks 2018 CY - Gaithersburg, MA, USA DA - 18.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - Laser beam melting KW - ProMoAM PY - 2018 AN - OPUS4-45401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Verfahrensentwicklung für das Prozessmonitoring in der additiven Fertigung von Metallen - Thermografie N2 - Aktuell werden Prozessmonitoringsysteme in der additiven Fertigung (AM) zur Überwachung der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie zumindest im metallbasierten AM schon kommerziell angeboten. Weitere Verfahren aus den Bereichen der Optik, Spektroskopie und zerstörungsfreien Prüfung werden in der Literatur als geeignet für die in-situ Anwendung bezeichnet, es finden sich aber nur wenige Berichte über konkrete Umsetzungen in die Praxis. Die Bundesanstalt für Materialforschung und -prüfung hat ein neues Projekt gestartet, dessen Ziel die Entwicklung von Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Bauteile in AM-Prozessen mit Laser- bzw. Lichtbogenquellen ist. Verschiedene Verfahren der zerstörungsfreien Prüfung, wie Thermografie, optische Tomografie, optische Emissionsspektroskopie, Wirbelstromprüfung und Laminografie werden in verschiedenen AM-Prozessen zum Einsatz gebracht und die Ergebnisse fusioniert. Die evaluierten Ergebnisse werden mit Referenzverfahren wie Computertomografie und Ultraschall-Tauchtechnik verglichen. Ziel ist eine deutliche Reduzierung aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen nach der Fertigung des Bauteiles und zugleich eine Verringerung von Ausschussproduktion. Hier wird das Projekt als Ganzes vorgestellt und der Fokus auf verschiedene Methoden der Temperaturmessung mit Hilfe der Thermografie gelegt. Anforderungen an die Messtechnik für verschiedene AM-Systeme werden diskutiert und erste experimentelle Ergebnisse werden präsentiert. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Additive Fertigung KW - Prozessmonitoring KW - ProMoAM KW - Thermografie PY - 2018 AN - OPUS4-46562 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spranger, Felix A1 - Hilgenberg, Kai T1 - Laser implantation: An innovative technique for surface texturing N2 - The laser implantation technique bases on a localized dispersing of ceramic particles in metallic surface layers for changing their micro geometry as well as their material properties. Using TiB2 and NbC hard particles, tailored microtextures consisting of elevated dome-, ring-, or line-shaped Features can be manufactured. Especially TiB2 implants feature high hardness values up to 1800 HV1 and ceramic particle contents up to 55 %, indicating superior wear resistant properties. KW - Laser implantation KW - Surface texturing KW - AISI D2 KW - TiB2 KW - NbC PY - 2019 UR - https://onlinelibrary.wiley.com/doi/epdf/10.1002/phvs.201900002 DO - https://doi.org/10.1002/phvs.201900002 SN - 2626-1294 VL - 16 IS - 1 SP - 38 EP - 41 PB - WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim CY - Weinheim AN - OPUS4-47290 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ Thermografie in der additiven Fertigung mittels Laser-Pulver-Auftragsschweißen N2 - Im Rahmen des Themenfeld Projektes „Process Monitoring of AM“ (ProMoAM) evaluiert die BAM gegenwärtig die Anwendbarkeit verschiedenster ZfP-Verfahren, darunter die Thermografie, zur Prozessüberwachung in der additiven Fertigung von Metallen in Hinblick auf die Qualitätssicherung. In diesem Beitrag werden SWIR-Thermografiemessungen während des Bauprozesses mittels Laser Pulver Auftragsschweißen (LPA) vorgestellt. Eine Herausforderung im Rahmen dieser Messungen liegt in der Positionierung der Kamera, welche entweder fixiert am Schweißarm, also mitbewegt, oder fixiert in der Baukammer, also stationär, erfolgen kann, wobei beide Varianten mit individuellen Vor- und Nachteilen verbunden sind. Eine stationäre Befestigung der Kamera ermöglicht zwar eine einfachere Zuordnung der Messdaten zu der jeweiligen Position im Bauteil, führt jedoch bei komplexeren Geometrien zwangsläufig zu Problemen durch Abschattungen und zu defokussierten Bereichen. Zur Auswertung von Thermogrammen, welche durch eine mit dem Schweißarm mitbewegte Kamera aufgenommen wurden, sind hingegen für jedes Bild akkurate Positionsdaten der Kamera nötig um die Messdaten einer Position im Bauteil zuzuordnen. Da die Positionsdaten des Schweißarmes im allgemeinen Fall durch die Anlagensoftware nicht zur Verfügung gestellt werden, muss diese Information durch zusätzliche Messungen aufgezeichnet werden. Hierzu verwenden wir einen an der Kamera befestigten Beschleunigungssensor. Dieser ermöglicht einen zeitlichen Abgleich mit dem vorprogrammierten Verfahrweg des Schweißarmes, welcher im Allgemeinen noch Unsicherheiten bezüglich genauer Geschwindigkeiten und Beschleunigungen offenlässt. Weiterhin untersuchen wir den Einfluss des empfindlichen Spektralbereiches der IR-Kamera durch den Vergleich von Messungen mit verschiedenen schmalbandigen Bandpassfiltern (25 nm FWHM) in einem Bereich von 1150 nm bis 1550 nm. T2 - Thermographie-Kolloquium 2019 CY - Halle (Saale), Germany DA - 19.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 AN - OPUS4-49078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Anwendung der Laserimplantation zur Strukturierung verschleißgefährdeter Werkzeuge N2 - In einer Vielzahl technischer Anwendungen spielt die Aufrechterhaltung eines definierten Reibungs- und Verschleißverhaltens zwischen bewegten Oberflächen für die Sicherheit und Funktionalität eine ent-scheidende Rolle. Die Oberflächentechnik versucht durch geeignete Verfahren die Randschichten zu ertüchtigen, um Reibung und Verschleiß zu kontrollieren. Eine Verbesserung der Materialeigenschaften kann durch flächige Beschichtungen erreicht werden. Zusätzlich ermöglichen Oberflächenstrukturierun-gen breite Möglichkeiten zur Beeinflussung des Schmierungszustandes bzw. der Kontaktbedingungen. Neben Negativstrukturen bieten ebenfalls erhabene Mikrostrukturen großes Potenzial zur Beeinflussung des tribologischen Verhaltens. Ihr Einsatz ist aber aufgrund der besonderen Verschleißproblematik er-habener Strukturen momentan limitiert, so dass in der Regel zusätzliche verschleißreduzierende Be-schichtungen notwendig werden. In diesem Beitrag wurde das Verfahren der Laserimplantation angewandt, mit dem erhabene und sepa-rierte Oberflächenstrukturen hoher Verschleißfestigkeit in einem Fertigungsschritt erzeugbar sind. Das Verfahren basiert auf einem lokalisierten Dispergieren von Hartstoffpartikeln. Hierfür wurde erstmalig ein gepulster Faserlaser mit hoher Strahlqualität zur Erzeugung punkt- und linienförmiger Mikrostrukturen angewandt. Versuche wurden auf dem Kaltarbeitsstahl X153CrMoV12 unter Anwendung von Titandibo-rid als Hartstoff durchgeführt. Anhand von Härtemessungen konnte gezeigt werden, dass sowohl punkt- als auch linienförmige Strukturen mit Härten über 1000 HV1 und einer feinkörnigen Mikrostruktur mit feinverteilten Hartstoffpartikeln herstellbar sind. Des Weiteren war es möglich, die Implantgeometrien, welche an Querschliffen und durch Weißlichtinterferometeraufnahmen erfasst wurden, durch die Puls-leistung und Pulsdauer zu steuern. T2 - 38. Assistentenseminar Füge- und Schweißtechnik CY - Rabenau, Germany DA - 06.10.2017 KW - Laserimplantation PY - 2019 UR - https://www.dvs-media.eu/de/neuerscheinungen/3646/38.-assistentenseminar-fuegetechnik SN - 978-3-96144-028-3 VL - 342 SP - 24 EP - 34 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-47637 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Einfluss der Porosität auf die Duktilitätseigenschaften von additiv gefertigtem AlSi10Mg N2 - Die Werkstoffeigenschaften im selektiven Laserstrahlschmelz-Verfahren hergestellter Bauteile werden von einer Vielzahl technologischer Parameter beeinflusst, sodass sich die Fertigungsgüte verschiedener Anlagen voneinander unterscheiden kann. Vor diesem Hintergrund wurde in der vorliegenden Arbeit untersucht, inwiefern sich durch verschiedene nachgelagerte Wärmebehandlungen die Mikrostruktur und die quasistatischen Festigkeitseigenschaften von Proben aus der Aluminiumlegierung AlSi10Mg, die mit verschiedenen Anlagen, Pulvern, Belichtungsstrategien und Prozessparametern gefertigt wurden, harmonisieren lassen. Die Versuche zeigten u.a., dass die erheblichen Festigkeitsunterschiede im Ausgangszustand unabhängig von der angewendeten Wärmebehandlungsroute aufgehoben wurden. Dennoch wurden signifikante Unterschiede in der Duktilität ermittelt. Anhand umfangreicher Bruchflächenanalysen konnte nachgewiesen werden, dass die in der Bruchfläche ermittelte Porosität eine lineare Korrelation zu der Bruchdehnung aufwies. T2 - 5. Tagung des Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online Meeting DA - 04.11.2020 KW - Wärmebehandlung KW - Additive Fertigung KW - Laser powder bed fusion KW - AlSi10Mg KW - Ringversuch PY - 2020 SN - 2509-8772 VL - 405 SP - 93 EP - 104 AN - OPUS4-51657 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Influence of welding parameters on electromagnetic supported degassing of die-casted and wrought aluminum N2 - The paper describes a systematic investigation of the EM influenced laser beam welding of the aluminum die casting alloy AlSi12(Fe) in comparison to a reference material, a wrought aluminum alloy AlMg3. By using of a face centred CCD test plan, the influencing variables laser power, welding velocity and magnetic flux density are varied with regard to their influence on the remaining porosity. The global pore fraction of the weld seams was analyzed by X-ray images with ImageJ. This enabled a qualitatively very good regression model to be derived for the respective material, which identifies the dominant influencing variables. The results prove, statistically verified, for the investigated parameter range, that - the magnetic flux density is the main cause for the porosity reduction, - the porosity rises with increasing laser power the porosity in the weld seams rises, - the influence of the welding velocity is negligible, - the pore quantity in wrought alloy is more strongly minimized by the magnetic flux density than in die casting, - the porosity decreases due to the EM influence by approx. 70 % compared to the unaffected welds. This effect is emphasized by the contour line charts, which illustrate the relationship between laser power and magnetic flux density. With the exception of the quadratic influence of B at the wrought alloy, the statistical correlation shows a linear development of the respective influence variables for both aluminum alloys. In order to investigate these deviations, further simulations with a focus on weld pool geometry and weld pool flow are to be performed. In addition, the welding results can be classified in accordance with DIN EN ISO 13919-2 in the highest evaluation group B for AlMg3 and in evaluation group C for AlSi12(Fe) by applying a magnetic flux density of 350 mT. The analysis of the CT images at constant laser power and welding velocity allows a direct comparison both between the two alloys and also as a function of the magnetic flux density with regard to the number and size of pores. An increase in the magnetic flux density leads to a significant decrease in the number and volume of pores, which can be seen more clearly in wrought alloy than in die casting. Very acceptable results can be achieved for both materials and different welding parameters. This successfully demonstrates the desired process robustness and functionality of the EM system for practical applications. For subsequent investigations of overlap joints, the lowest possible laser power and a high magnetic flux density are recommended. T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - AISI D2 KW - Laser implantation KW - Surface texturing KW - TiB2 PY - 2019 SN - 978-1-940168-1-42 SP - Paper Macro 1202 AN - OPUS4-50009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. ED - Merklein, M. T1 - Untersuchung des tribologischen Einsatzverhaltens von lokal dispergierten Presshärtewerkzeugoberflächen N2 - Das Presshärteverfahren hat sich zur ressourceneffizienten Verarbeitung von höchstfesten Stahlwerkstoffen im Karosserieleichtbau weltweit etabliert. Die fehlerfreie Bauteilproduktion wird jedoch durch Reibungs- und Verschleißerscheinungen aufgrund hoher thermo-mechanischer Werkzeugbelastungen und fehlender Schmierstoffsysteme limitiert. Als Lösungsansatz wird eine Modifikation der Werkzeugoberfläche mittels Laserimplantation angestrebt, um folglich deren Verschleißbeständigkeit nachhaltig zu erhöhen. Das Verfahren basiert auf einem lokalen Dispergieren keramischer Hartstoffpartikel in die Werkzeugoberfläche, infolgedessen hochfeste und erhabene Strukturen im Mikrometerbereich entstehen. Aufgrund der signifikanten Reduzierung der Kontaktfläche sowie der hohen Verschleißbeständigkeit der eingesetzten TiB2-Hartstoffe wird ein verbessertes tribologisches Einsatzverhalten unter presshärtetypischen Prozessbedingungen erwartet. Zur Verifizierung dieser Annahmen wurden im Rahmen dieser Arbeit modifizierte Pin-on-Disk Tests durchgeführt, um das Reib- und Verschleißverhalten der laserimplantierten Werkzeugoberflächen unter Presshärtebedingungen zu untersuchen. Zur weiteren Vertiefung des Prozess-verständnisses wurden die verschlissenen Platinen via Tastschnittmessungen und Querschliffaufnahmen analysiert. Durch den Ergebnisvergleich mit konventionellen Werkzeugoberflächen erfolgte eine abschließende Bewertung des tribologischen Einsatzverhaltens der laserimplantierten Strukturen. T2 - 14. Erlanger Workshop Warmblechumformung 2019 CY - Fürth, Germany DA - 19.11.2019 KW - Laserimplantation KW - TiB2 KW - X38CrMoV5-3 KW - Presshärten KW - Tribologie PY - 2019 SP - 169 EP - 178 PB - Meisenbach Verlag Bamberg CY - Bamberg AN - OPUS4-49703 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Verfahrensentwicklung für die Prozessüberwachung in der additiven Fertigung - Thermografie N2 - Für die Prozessüberwachung in der additiven Fertigung (AM) werden Sensoren und Messsysteme zur Kontrolle der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie zumindest im metallbasierten AM schon kommerziell angeboten. Weitere Verfahren der Optik, Spektroskopie und zerstörungsfreien Prüfung werden in der Literatur als geeignet für die in-situ Anwendung bezeichnet, es finden sich aber nur wenige Berichte über konkrete praktische Umsetzungen. Ein neues Projekt der BAM im Themenfeld Material hat daher das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile in AM-Prozessen mit Laser- bzw. Lichtbogenquellen zu entwickeln. Dies beinhaltet neben passiver und aktiver Thermografie die optische Tomografie, die optische Emissionsspektroskopie, die Wirbelstromprüfung, die Laminografie, die Röntgenrückstreuung und photoakustische Verfahren. Diese Verfahren werden in verschiedenen AM-Systemen zum selektiven Laserschmelzen, zum Laser-Pulver-Auftragsschweißen und zum Lichtbogenschweißen mit Drahtzuführung zum Einsatz gebracht. Für die zum Teil sehr großen Datenmengen werden Algorithmen für ein effizientes Preprocessing entwickelt und Merkmale der Messdaten in Korrelation zu Fehlern und Inhomogenitäten extrahiert, welche mit Referenzverfahren wie Computertomografie und Ultraschall-Tauchtechnik ermittelt werden. Die Ergebnisse der Einzelverfahren werden fusioniert und mit den Fertigungsparametern korreliert. Diese Prozessüberwachung soll eine deutliche Reduzierung aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen nach der Fertigung des Bauteiles und zugleich eine Verringerung von Ausschussproduktion bewirken. Im Beitrag wird zunächst das Projekt als Ganzes vorgestellt und dann der Fokus auf die Thermografie mit Detektoren in verschiedenen Wellenlängenbereichen gelegt. Anforderungen an die Messtechnik für verschiedene AM-Systeme werden diskutiert und experimentelle Ergebnisse im Vergleich zur optischen Tomografie und weiterer Verfahren präsentiert. T2 - DGZfP DACH Jahrestagung 2019 CY - Friedrichshafen, Germany DA - 27.05.2019 KW - Additive Fertigung KW - 3D Druck KW - Thermografie KW - L-PBF KW - SLM PY - 2019 AN - OPUS4-50213 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Untersuchung des tribologischen Einsatzverhaltens von lokal dispergierten Presshärtewerkzeugoberflächen N2 - Das Presshärteverfahren hat sich zur ressourceneffizienten Verarbeitung von höchstfesten Stahlwerkstoffen im Karosserieleichtbau weltweit etabliert. Die fehlerfreie Bauteilproduktion wird jedoch durch Reibungs- und Verschleißerscheinungen aufgrund hoher thermo-mechanischer Werkzeugbelastungen und fehlender Schmierstoffsysteme limitiert. Als Lösungsansatz wird eine Modifikation der Werkzeugoberfläche mittels Laserimplantation angestrebt, um folglich deren Verschleißbeständigkeit nachhaltig zu erhöhen. Das Verfahren basiert auf einem lokalen Dispergieren keramischer Hartstoffpartikel in die Werkzeugoberfläche, infolgedessen hochfeste und erhabene Strukturen im Mikrometerbereich entstehen. Aufgrund der signifikanten Reduzierung der Kontaktfläche sowie der hohen Verschleißbeständigkeit der eingesetzten TiB2-Hartstoffe wird ein verbessertes tribologisches Einsatzverhalten unter presshärtetypischen Prozessbedingungen erwartet. Zur Verifizierung dieser Annahmen wurden im Rahmen dieser Arbeit modifizierte Pin-on-Disk Tests durchgeführt, um das Reib- und Verschleißverhalten der laserimplantierten Werkzeugoberflächen unter Presshärtebedingungen zu untersuchen. Zur weiteren Vertiefung des Prozess-verständnisses wurden die verschlissenen Platinen via Tastschnittmessungen und Querschliffaufnahmen analysiert. Durch den Ergebnisvergleich mit konventionellen Werkzeugoberflächen erfolgte eine abschließende Bewertung des tribologischen Einsatzverhaltens der laserimplantierten Strukturen. T2 - 14. Erlanger Workshop Warmblechumformung 2019 CY - Fürth, Germany DA - 19.11.2019 KW - Laser implantation KW - TiB2 KW - X38CrMoV5-3 KW - Presshärten KW - Tribologie PY - 2019 AN - OPUS4-49699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heßmann, Jennifer A1 - Hilgenberg, Kai T1 - Entwicklung einer neuartigen Fügetechnologie für artungleiche Werkstoffe N2 - Vorstellung einer neuartigen Fügetechnologie für artungleiche Werkstoffe (Stahl und Aluminium) mit Hilfe Laserstrahlschweißen und elektromagnetischer Schmelzbadbeeinflussung. T2 - Assistentenseminar der WGF 2019 CY - Braunlage, Germany DA - 25.09.2019 KW - Fügetechnologie KW - Elektromagnetsiche Schmelzbadbeeinflussung KW - Artungleiche Werkstoffe KW - Laserstrahlschweißen KW - Stahl und Aluminium PY - 2019 AN - OPUS4-49524 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Aerosol measurements KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Plume KW - Particle gas emission PY - 2019 AN - OPUS4-49387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Hilgenberg, Kai T1 - In-situ defect detection in Laser Powder Bed Fusion (L-PBF) by using thermography and optical tomography N2 - Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing (AM) technologies for the production of complex metallic real part components. Due to the multitude of factors influencing process conditions and part quality and due to the layer-wise characteristic of the process, monitoring of process signatures seems to be mandatory in case of the production of safety critical components. Here, the iterative process nature enables unique access for in-situ monitoring during part manufacture. In this talk, the successful test of the synchronous use of a high-frequency infrared camera and a camera for long time exposure, working in the visible spectrum (VIS) and equipped with a near infrared filter (NIR), will be introduced as a machine manufacturer independent thermal detection monitoring set-up. Thereby, the synchronous use of an infrared camera and a VIS NIR camera combines the advantages of high framerate and high spatial resolution. The manufacture of a 316L stainless steel specimen, containing purposely seeded defects and volumes with forced changes of energy inputs, was monitored during the build. The measured thermal responses are analysed and compared with a defect mapping obtained by micro X-ray computed tomography (CT). The first results regarding methods for data analysis, derived correlations between measured signals and detected defects as well as sources of possible data misinterpretation are presented in this talk. T2 - 45. MPA Seminar - Fit for Future – Advanced Manufacturing Technologies, Materials and Lifetime CY - Stuttgart, Germany DA - 01.10.2019 KW - Data fusion KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Lack-of-fusion PY - 2019 AN - OPUS4-49386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Laserimplantation von TiB2-Partikeln in X153CrMoV12 Kaltarbeitsstahl und Ihr Einfluss auf die Materialeigenschaften N2 - Die Laserimplantation erlaubt die Herstellung verschleißbeständiger, erhabener Mikrostrukturen (Implants) auf Stahloberflächen durch ein diskontinuierliches Dispergieren von keramischen Partikeln mittels gepulster Laserstrahlung. Durch die flexible Anordnung separierter Implants zu komplexen Mustern erlaubt das Verfahren eine gezielte Oberflächenstrukturierung zur Beeinflussung des Reibungs- und Verschleißverhaltens. Insbesondere erwies sich Titandiborid (TiB2) als Implantationsmaterial für geeig-net, da eine Manipulation der Implantgeometrie in einem breiten Bereich vorgenommen werden konnte, ohne dass Materialdefekte wie Risse oder Poren auftraten. Ziel der Untersuchungen war es, den Einfluss implantierter TiB2-Partikel auf die Materialeigenschaften von X153CrMoV12 zu ermitteln. Hierfür wurden im Rahmen der Arbeit die Laserparameter (Pulsleistung und -dauer) in einem breiten Parameterfeld variiert und vergleichende Untersuchungen an TiB2 implan-tierten Zonen sowie an punktuell umschmelzstrukturierten Zonen durchgeführt. Die Ergebnisse zeigen, dass eine reine Umschmelzstrukturierung zu einer deutlichen Reduktion der Oberflächenhärte aufgrund erhöhter Restaustenitgehalte (γR) führt. Im Gegensatz dazu führt das Laserimplantieren von TiB2-Partikeln zu einer deutlichen Härtesteigerung in den kuppel- oder ringförmigen Implants. Härtewerte von bis zu 1800 HV1 resultieren aus dispergierten TiB2-Primärpartikeln sowie in-situ ausgeschiedenen Se-kundärphasen, durch die der Restaustenitanteil zudem deutlich reduziert wird. T2 - 39. Assistentenseminar Füge- und Schweißtechnik CY - Eupen, Belgium DA - 12.09.2018 KW - Laserimplantation KW - TiB2 KW - AISI D2 KW - Laserdispergieren PY - 2019 SN - 978-3-96144-070-2 VL - Band 356 SP - 51 EP - 59 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-48751 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. ED - M., Oldenburg ED - J., Hardell ED - D., Caellas T1 - Tribological performance of localized dispersed X38CrMoV5-3 surfaces for hot stamping of Al-Si coated 22MnB5 sheets N2 - Over the last years, the weight of modern car bodies has risen significantly due to the increasing customers’ demand for comfort and safety equipment. However, this ongoing trend leads to an increasing fuel consumption and thus to higher carbon dioxide emissions. In order to counteract these problems, hot stamping has been established in the automotive industry as a key technolo-gy for lightweight construction, regarding the manufacturing of safety-relevant car body compo-nents. Hot stamped parts are commonly made out of boron-manganese steel 22MnB5, which is initially austenized and subsequently formed and quenched in one process step. As a result, geo-metrical complex structures with an ultimate tensile strength of 1500 MPa are generated. The surfaces of the workpieces are coated with an Al-Si layer to avoid oxide scale formation and to ensure corrosion protection. However, the coating system leads to an increased adhesive wear on the tool surface due to the high thermo-mechanical tool stresses. Therefore, a time and cost con-suming rework of the hot stamping tools is required. The aim of this study is to increase the tribological performance of hot stamping tools by using a laser implantation process. This tech-nique allows the ma-nufacturing of separated, elevated and dome-shaped microstructures on the tool surface in consequence of a localized dispersing of hard ceramic particles by pulsed laser radiation. The generated surface features offer great potential for reducing the tribological load, due to their high hardness and wear resistance. For this purpose, the friction coefficient of un-modified and laser implanted tool surfaces were examined and compared by using a modified pin-on-disk test. In addition, the surfaces were analyzed by optical measurements in order to quantify the amount of wear. T2 - 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel CHS2-2019 CY - Lulea, Sweden DA - 02.06.2019 KW - Laser implantation KW - Surface texturing KW - X38CrMoV5-3 KW - TiB2 KW - Hot-Stamping PY - 2019 VL - 2019 SP - 357 EP - 364 AN - OPUS4-48285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Schirdewahn, S. A1 - Kromm, Arne A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - On the Influence of TiB2 , TiC and TiN Hard Particles on the Microstructure of Localized Laser Dispersed AISI D2 Tool Steel Surfaces N2 - The control of friction and wear is a major concern in many industrial applications. A promising method for a tailored surface modification is the so-called laser implantation technique. This method combines surface texturing and material optimization in one processing step by a localized dispersing of hard ceramic particles using pulsed laser radiation. Wear resistant, protruding micrometric features (implants) with defined geometry can be created in deterministic pattern where needed on highly stressed surfaces, i.e. on forming or cutting tools. However, in order to maintain the implants over the tool’s lifetime, a suitable selection of hard ceramic particles is a prerequisite. They must provide a defect-free Metal Matrix Composite with a high share of homogeneously distributed particles and especially a high implant hardness. In this study TiN, TiC and TiB2 hard particles were compared as implant materials for the first time. By a systematic variation of the pulse power and pulse duration, their dispersing behavior and influence on the material properties of AISI D2 tool steel was investigated. Although all powder materials had grain sizes smaller than 10 µm, it was possible to disperse them by pulsed laser radiation and to obtain defect-free protruding implants. The highest share of dispersed particles (~64 %) was observed for TiB2. By scanning electron microscopy and energy dispersive X-ray spectroscopy, it was also shown that a significant share of the pre-placed particles was dissolved by the laser beam and precipitated as nanometer sized particles within the matrix during solidification. These in-situ formed particles have a decisive influence on the material properties. While the TiN and TiC implants have shown maximum hardness values of 750 HV1 and 850 HV1, the TiB2 implants have shown the highest hardness values with more than 1600 HV1. By X-ray diffraction, it was possible to ascribe the lower hardness values of TiC and TiN implants to high amounts of retained austenite in the metal matrix. By implanting TiB2, the formation of retained austenite was successfully suppressed due to the in-situ formation of TiC particles, which was proven by electron backscatter diffraction. In conclusion, all the implant materials are basically suitable for laser implantation on AISI D2 tool steel. However, TiB2 has shown the most promising results. T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser implantation KW - Surface texturing KW - AISI D2 KW - TiB2 PY - 2019 AN - OPUS4-49316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Tribological performance of localized dispersed X38CrMoV5-3 surfaces for hot stamping of Al-Si coated 22MnB5 sheets N2 - Over the last years, the weight of modern car bodies has risen significantly due to the increasing customers’ demand for comfort and safety equipment. However, this ongoing trend leads to an increasing fuel consumption and thus to higher carbon dioxide emissions. In order to counteract these problems, hot stamping has been established in the automotive industry as a key technology for lightweight construction, regarding the manufacturing of safety-relevant car body components. Hot stamped parts are commonly made out of boron-manganese steel 22MnB5, which is initially austenized and subsequently formed and quenched in one process step. As a result, geometrical complex structures with an ultimate tensile strength of 1500 MPa are generated. The surfaces of the workpieces are coated with an Al-Si layer to avoid oxide scale formation and to ensure corro-sion protection. However, the coating system leads to an increased adhesive wear on the tool sur-face due to the high thermo-mechanical tool stresses. Therefore, a time and cost consuming rework of the hot stamping tools is required. The aim of this study is to increase the tribological perfor-mance of hot stamping tools by using a laser implantation process. This technique allows the ma-nufacturing of separated, elevated and dome-shaped microstructures on the tool surface in conse-quence of a localized dispersing of hard ceramic particles by pulsed laser radiation. The generated surface features offer great potential for reducing the tribological load, due to their high hardness and wear resistance. For this purpose, the friction coefficient of unmodified and laser implanted tool surfaces were examined and compared by using a modified pin-on-disk test. In addition, the surfaces were analyzed by optical measurements in order to quantify the amount of wear. T2 - 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel CHS2-2019 CY - Lulea, Sweden DA - 02.06.2019 KW - Laser implantation KW - Surface texturing KW - Hot stamping PY - 2019 AN - OPUS4-48323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nazarzadehmoafi, Maryam A1 - Zscherpel, Uwe A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Maierhofer, Christiane A1 - Waske, Anja T1 - Detection of imprinted artificial defects in additively-manufactured samples by means of radiological inspections N2 - As a part of ProMoAM project, we are optimizing a prototype X-ray backscatter to reach NDT requirements, and thereafter to apply it for process monitoring. Moreover, we studied the capability of a radiography approach to detect artificial defects in AM components made by laser powder bed fusion (L-PBF). T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - NDT KW - Radiological inspections PY - 2019 AN - OPUS4-48515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heßmann, Jennifer A1 - Bachmann, Marcel A1 - Hilgenberg, Kai T1 - Joining dissimilar materials a new approach based on laser beam welding and melt displacement by electromagnetic forces N2 - In order to reduce weight of vehicles, the interest in multi-material-design has been growing within the last few years. For vehicles the combination of steel and aluminium alloys offers the most promising compromise between weight, strength and formability. Thermal joining of these dissimilar materials is still a challenge to overcome. A possible approach is a new joining technology, whereby a combination of laser beam welding and contactless induced electromagnetic forces are used to displace the generated melt of one joining partner into a notch of the other. This paper presents the working principle and shows numerical analyses to improve the understanding of this joining process. The simulations help to calculate the thermal development of the joining partners, which is important for the formation of intermetallic phases. Furthermore, the calculation of the time required for a complete displacement is possible. The numerical results are validated by experimental results. T2 - LiM 2021 CY - Online meeting DA - 21.06.2021 KW - Joining dissimilar materials KW - Laser beam welding KW - Electromagnetic forces KW - Steel and aluminium PY - 2021 SP - 1 EP - 9 PB - Wissenschaftliche Gesellschaft Lasertechnik e.V. (WLT) AN - OPUS4-52978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Maierhofer, Christiane T1 - Towards the determination of real process temperatures in the LMD process my multispectral thermography N2 - Due to the rapid thermal cycles involved in additive manufacturing of metals, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine their formation, in-process measurements of the temperature are needed. Since the part emissivity is strongly inhomogeneous and rapidly changing in the process, the applicability of thermography for the determination of thermodynamic temperatures is limited. Measuring the thermal radiation in different wavelengths simultaneously, temperature and emissivity can be separated. Here, we present results of a preliminary study using multispectral thermography to obtain real temperatures and emissivities in directed energy deposition (DED) processes. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 DO - https://doi.org/10.1117/12.2587881 AN - OPUS4-52515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heßmann, Jennifer A1 - Hilgenberg, Kai A1 - Bachmann, Marcel T1 - An electromagnetic approach to dissimilar metal welding N2 - To save weight without affecting the functional properties of vehicles, heavy materials must be replaced with lighter alternatives.Modern lightweight concepts have therefore been developed, featuring multi-material designs that require the joining of dissimilar materials.One new possible approach for the joining of dissimilar metals is based on laser welding and melt displacement by contactless induced electromagnetic forces. KW - Joining dissimilar materials KW - Laser beam welding KW - Electromagnetic forces KW - Steel and aluminium PY - 2021 SP - 1 EP - 5 AN - OPUS4-53373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Gornushkin, Igor B. T1 - In-situ temperature measurements of the LMD process by IR-spectroscopy and Thermography N2 - Temperature measurements of the LMD process by IR-spectroscopy and Thermography are presenet and compared. T2 - 2st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Thermography PY - 2021 AN - OPUS4-52565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM 2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Plume KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Particle gas emission KW - Aerosol measurements PY - 2019 SP - 1 EP - 7 AN - OPUS4-49388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Scheuschner, Nils A1 - Hilgenberg, Kai T1 - In situ heat accumulation by geometrical features obstructing heat flux and by reduced inter layer times in laser powder bed fusion of AISI 316L stainless steel N2 - Material qualification for laser powder bed fusion (L-PBF) processes are often based on results derived from additively manufactured (AM) bulk material or small density cubes, although it is well known that the part geometry has a tremendous influence on the heat flux and, therefore, on the thermal history of an AM component. This study shows experimentally the effect of simple geometrical obstructions to the heat flux on cooling behavior and solidification conditions of 316L stainless steel processed by L-PBF. Additionally, it respects two distinct inter layer times (ILT) as well as the build height of the parts. The cooling behavior of the parts is in-situ traced by infrared (IR) thermography during the built-up. The IR signals reveal significant differences in cooling conditions, which are correlated to differences in melt pool geometries. The acquired data and results can be used for validation of computational models and improvements of quality assurance. KW - Selective laser beam melting KW - Thermography KW - Melt pool depth KW - Inter layer time KW - Ppreheating temperature KW - Additive Manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512549 DO - https://doi.org/10.1016/j.procir.2020.09.030 VL - 94 SP - 155 EP - 160 PB - Elsevier B.V. AN - OPUS4-51254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, Fritz A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Hilgenberg, Kai T1 - Numerical simulation of the weld pool dynamics during pulsed laser welding using adapted heat source models N2 - A transient simulation including the impact of the laser energy, the melting of the metal and the development of the weld pool was conducted to observe the evolution of the vapor capillary and the solidification of the melt in pulsed laser beam welding of AISI 304 steel. The phase field method was implemented to investigate the evolution and behavior of the liquid-gas interface during welding and to describe the condensed and vapor phases. The effects of phase transition, recoil pressure, thermo-capillary and natural convection, vaporization and temperature dependent material properties were taken into account. A Gaussian-like heat source under consideration of the Fresnel absorption model was used to model the energy input of the laser beam. The heat source model was extended by a newly developed empirical approach of describing multiple beam reflections in the keyhole. To validate this new model, the numerical results were compared to experimental data and good agreement regarding the size and shape of the weld pool was observed. T2 - LANE Conference 2018 CY - Fürth, Germany DA - 03.09.2018 KW - Pulsed laser beam welding KW - Weld pool dynamics KW - Multiple reflections KW - Vaporization PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458749 DO - https://doi.org/10.1016/j.procir.2018.08.044 SN - 2212-8271 VL - 74 SP - 679 EP - 682 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-45874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Kriech- und Bruchverhalten von additiv hergestelltem austenitischem Stahl 316L. Vergleich zum konventionellen Werkstoff. N2 - Eine kritische Aufgabe im Rahmen der Etablierung von Prozess-Struktur-Eigenschafts-Performance-Beziehungen bei der additiven Fertigung (AM) von Metallen ist die Ermittlung von zuverlässigen und gut dokumentierten Kennwerten zum Materialverhalten sowie das Schaffen von Wissen über die Struktur-Eigenschafts-Korrelation. Schließlich ist dies die Grundlage für die Entwicklung gezielterer Prozessoptimierungen und zuverlässigerer Lebensdauer-Vorhersagen. In diesem Zusammenhang zielt dieser Beitrag darauf ab, Daten und Erkenntnisse über das Kriechverhalten des austenitischen Edelstahls 316L zu liefern, der mittels Laser-Powder-Bed-Fusion (L-PBF) hergestellt wird. Um dieses Ziel zu erreichen, wurden Proben aus konventionellem warmgewalztem sowie AM-Material gemäß den bestehenden Normen für konventionelles Material geprüft und vor und nach dem Versagen mikrostrukturell charakterisiert. Die Probekörper wurden aus einzelnen Blöcken des AM-Materials gefertigt. Die Blöcke wurden mit einer Standard-Scan- und Aufbaustrategie hergestellt und anschließend wärmebehandelt. Das Kriechverhalten wird anhand der Kriechlebensdauer und ausgewählter Kriechkurven und Kennwerte beschrieben und vergleichend bewertet. Der Einfluss von Defekten und Mikrostruktur auf das Materialverhalten wird anhand von zerstörenden und zerstörungsfreien Auswertungen an ausgewählten Proben analysiert. Der AM-Werkstoff zeigt kürzere Kriechlebensdauern, erreicht das sekundäre Kriechstadium deutlich schneller und bei geringerer Dehnung und weist eine geringere Kriechduktilität im Vergleich zu seinem konventionellen Gegenstück auf. Das Kriechschädigungsverhalten des AM-Werkstoffs ist eher mikrostruktur- als defektgesteuert und ist durch die Bildung intergranularer Kriechrisse gekennzeichnet. Als kritische Merkmale werden die Versetzungsdichte sowie die Versprödung der Korngrenzen identifiziert. Die Mikro-Computertomographie (µCT) erweist sich als Alternative zur Metallographie, um die Kriechschädigung zu analysieren. T2 - Sitzung des DGM-Arbeitskreises Mechanisches Werkstoffverhalten bei hoher Temperatur CY - Online meeting DA - 07.10.2020 KW - 316L KW - Kriechen KW - Additive Fertigung KW - Mikrostruktur KW - Mikro-Computertomographie PY - 2020 AN - OPUS4-51824 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Baesso, Ilaria A1 - Straße, Anne A1 - Pittner, Andreas A1 - Pignatelli, Giuseppe A1 - Seeger, Stefan A1 - Nazarzadehmoafi, Maryam A1 - Ehlers, Henrik A1 - Gohlke, Dirk A1 - Homann, Tobias A1 - Scheuschner, Nils A1 - Ulbricht, Alexander A1 - Heinrich, P. A1 - Maierhofer, Christiane T1 - Process monitoring of additive manufacturing of metals - an overview of the project ProMoAM N2 - The project ProMoAM is presented. The goal of the project is to evaluate which NDT techniques or combination of techniques is suited for in-situ quality assurance in additive manufacturing of metals. To this end, also 3d-data fusion and visualization techniques are applied. Additional ex-situ NDT-techniques are used as references for defect detection and quantification. Feasability studies for NDT-techniques that are presently not applicable for in-situ use are performed as well. The presentation gives a brief overview of the whole project and the different involved NDT-techniques. T2 - Workshop od Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - Process monitoring KW - NDT PY - 2019 AN - OPUS4-48087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Einfluss der Zwischenlagenzeit und der Bauteilhöhe auf die resultierenden Eigenschaften laserstrahlgeschmolzener austenitischer Stahlbauteile N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in situ mittels Thermographiekamera überwacht, sodass Informationen über das Abkühlverhalten der Bauteile während des Prozesses gewonnen werden konnten. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - DGM Fachtagung "Werkstoffe und Additive Fertigung" CY - Online meeting DA - 13.05.2020 KW - Laser Powder Bed Fusion KW - Additive Fertigung KW - Zwischenlagenzeit KW - In-situ Monitoring PY - 2020 AN - OPUS4-50788 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Spranger, Felix T1 - Localized laser surface treatments of metals: State of the art and new developments N2 - Localized laser surface treatments are able to produce tailor-made surface properties to fulfill requirements of a variety of technical applications. Especially micrometric surface topologies can be beneficial for optimizing tribological contact situations. Structures with lowered surface features are already utilized for bearings or cylinders of combustion engines. There are also other fields of application, where the potential of protruding surface features is known, e. g. for metal forming tools. A promising approach for a tailored surface treatment working in the microsecond range is the localized dispersing of hard ceramic particles by pulsed laser radiation, the so-called laser implantation. This technique is able to produce micrometric surface structures and to improve simultaneously the wear resistance by creating metal matrix composites. In this talk, the laser implantation technique is described and compared to the state of the art. The potential to adjust the geometry as well as the mechanical properties of laser implanted surfaces is demonstrated by means of microstructural and topographical investigations of different ceramic materials and steel substrates. Finally, results of research projects are presented aiming on the application of such structured surfaces. Their capability to change and optimize friction and wear are demonstrated for fully lubricated contacts, tools for hot sheet metal forming and tools for cold rolling of sheets for automotive applications. T2 - 10th International Conference on Laser Applications (ICLA 10) CY - Cairo, Egypt DA - 23.11.2019 KW - Tool steel KW - Laser implantation KW - Laser surface texturing KW - Laser dispersing PY - 2019 AN - OPUS4-49959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Localized Laser Dispersing of Titanium-Based Particles for Improving the Tribological Performance of Hot Stamping Tools N2 - Within the scope of this work, a new surface engineering technology named laser implantation has been investigated, in order to improve the tribological performance of hot stamping tools. This technique is based on manufacturing highly wear-resistant, separated, and elevated microfeatures by embedding hard ceramic particles into the tool surface via pulsed laser radiation. Hence, the topography and material properties of the tool are modified, which influences the thermal and tribological interactions at the blank-die interface. To verify these assumptions and to clarify the cause–effect relations, different titanium-based particles (TiB2, TiC, TiN) were laser-implanted and subsequently analyzed regarding to their geometrical shape and mechanical properties. Afterwards, quenching tests as well as tribological experiments were carried out by using titanium-diboride as the most promising implantation material for reducing the tribological load due to high hardness value of the generated implants. Compared to conventional tooling systems, the modified tool surfaces revealed a significantly higher wear resistance as well as reduced friction forces while offering the possibility to adjust the thermal interactions at the blank-die interface. Based on these results, a tailored tool surface modification can be pursued in future research work, in order to enhance the effectiveness of the hot stamping technology. KW - Hot stamping KW - Tribology KW - Surface modification KW - Localized laser dispersing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510981 DO - https://doi.org/10.3390/jmmp4030068 VL - 4 IS - 3 SP - 68 PB - MDPI AN - OPUS4-51098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Localized dispersing of TiB2 and TiN particles via pulsed laser radiation for improving the tribological performance of hot stamping tools N2 - The aim of this study is to increase the tribological performance of hot stamping tools by using a laser implantation process. This technique allows the fabrication of separated, elevated and dome-shaped microfeatures on the tool surface in consequence of a localized dispersing of ceramic particles via pulsed laser radiation. Hence, the topography and material properties of the tool are modified, which influences the tribological interactions at the blank-die interface. However, an appropriate selection of ceramic particles is an essential prerequisite, in order to obtain tailored and highly wear resistant surface features. In this regard, different titanium-based hard particles (TiB2 and TiN) were laser-implanted on hot working tool specimens and subsequently tested by means of a modified pin-on-disk test regarding to their wear and friction behavior. KW - Surface modification KW - Tribology KW - Laser implantation KW - Hot working tool steel KW - Hot stamping PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514171 DO - https://doi.org/10.1016/j.procir.2020.09.069 VL - 94 SP - 901 EP - 904 PB - Elsevier B.V. AN - OPUS4-51417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Hofmann, Michael A1 - Bruno, Giovanni T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 08.12.2020 KW - Computed tomography KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Residual stress KW - Thermography KW - LPBF KW - Laser Powder Bed Fusion PY - 2020 AN - OPUS4-51793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther T1 - µCT as Benchmark for Online Process Monitoring N2 - µCT is used to validate the capability of online monitoring for in-situ detection of defects during the L-PBF build process, which is a focus of the TF project ProMoAM. Our first experiments show that online monitoring using thermography and optical tomography cameras are able to detect defects in the built part. But further research is needed to understand root cause of the correlation. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting PY - 2019 AN - OPUS4-48073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Thermografische Prozessüberwachung bei der BAM – Additive Fertigung von Metallen N2 - Vorstellung des TF-Projektes ProMoAM und von Ergebnissen des in-situ Monitorings mit Thermografie T2 - Sitzung des VDI-GPL-FA 105.2 Additive Manufacturing-Metalle CY - Online meeting DA - 27.02.2019 KW - Additive manufacturing KW - In situ Monitoring KW - Thermograhy PY - 2019 AN - OPUS4-53534 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Überblick und Beispiele zur additiven Fertigung N2 - Im Vortrag wird in die Grundlagen der additiven Fertigungsverfahren eingeführt und dies für metallbasierte Verfahren vertieft. Es werden zudem aktuelle industrielle Anwendungsbeispiele aufgezeigt sowie Forschungsbedarfe und Herausforderungen benannt. T2 - DVS-Bezirksverbandstreffen Berlin CY - Berlin, Germany DA - 28.02.2018 KW - Additive Fertigung KW - Additive manufacturing KW - Laserstrahlschmelzen PY - 2018 AN - OPUS4-46003 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Sprengel, Maximilian A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - How Temperature Gradient Influences the Formation of Residual Stresses in Metallic Parts Made by L-PBF N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured (AM) parts and important factors for residual stress formation which have implications on structural integrity. This study examined the influence of heat input on the distribution of residual stresses in two prisms produced by laser powder bed fusion (L-PBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two distinct helix scanning strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. Residual stresses were characterised at one plane perpendicular to the building direction at half of its build height using neutron diffraction. In addition, the defect distribution was analysed via micro X-ray computed tomography (µCT) in a twin specimen. Both scanning strategies reveal residual stress distributions typical for AM: compressive stresses in the bulk and tensile stresses at the surface. However, temperature gradients and maximum stress levels differ due to the different heat input. Regarding the X-ray µCT results, they show an accumulation of defects at the corners where the laser direction turned through 90°. The results demonstrate that neutron diffraction and X-ray µCT can be successfully used as non-destructive methods to analyse through-thickness residual stress and defect distribution in AM parts, and in the presented case, illustrate the influence of scanning strategies. This approach contributes to deeper assessment of structural integrity of AM materials and components. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norwegen DA - 09.09.2019 KW - AGIL KW - Neutron diffraction KW - Thermography KW - Additive manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther T1 - The Influence of the Temperature Gradient on the Distribution of Residual Stresses in AM AISI 316L N2 - Steep temperature gradients and solidification shrinkage are the main contributors to the formation of residual stresses in additively manufactured metallic parts produced by laser beam melting. The aim of this work was to determine the influence of the temperature gradient. Diffraction results show a similar pattern for both specimens, indicating the shrinkage to be more dominant for the distribution of residual stresses than the temperature gradient. Thermography results imply that a higher energy input result in higher compressive residual stresses in the bulk. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting KW - Neutron Diffraction PY - 2019 AN - OPUS4-48075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André A1 - Avilov, Vjaceslav A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Laserstrahlschweißen dicker Stahlplatten mit elektromagnetischer Schmelzbadunterstützung N2 - Das bislang zur Vermeidung unzulässiger Wurzelüberhöhungen beim Laserstrahlschweißen von Aluminiumlegierungen bzw. austenitischem Stahl eingesetzte Verfahren der elektromagnetischen Schmelzbadstütze konnte innerhalb der vorliegenden Untersuchung erfolgreich zur Kompensation des hydrostatischen Druckes von ferromagnetischen Stählen übertragen werden. Es wurden dabei Laserstrahlschweißversuche in PA-Position an bis zu 20 mm dickem Duplexstahl 1.4462 sowie Baustahl S235JR durchgeführt. Unter konstanten Schweißparametern wurden Durchschweißungen generiert. Dem hydrostatischen Druck wurde unter Verwendung der Technologie zur elektromagnetischen Schmelzbadunterstützung durch Variation der Oszillationsfrequenz und der AC-Leistung des Magnetsystems entgegengewirkt. Zunächst konzentrierten sich die Versuche auf den Duplexstahl 1.4462, welcher jeweils aus 50 % Ferrit und Austenit besteht. Hierbei konnte festgestellt werden, dass zur idealen Kompensation von 15 mm bei einer Frequenz von 1,7 kHz eine AC-Leistung von 1,6 kW erforderlich ist, die Schweißnähte aber bereits bei einer AC-Leistung von ca. 0,8 kW in die Bewertungsgruppe B der DIN EN ISO 13919-1:1996-09 eingeordent werden können. Zur idealen Kompensation des hydrostatischen Druckes bei 20 mm dickem Duplexstahl war eine um 20 % höhere AC-Leistung notwendig. Im Anschluss an die Versuche mit dem Duplexstahl wurden die Untersuchungen auf bis zu 20 mm dicke Proben aus Baustahl S235JR erweitert. Für 15 mm konnten die Schweißnähte bei einer Frequenz von 1,7 kHz ab einer AC-Leistung von 1,3 kW in die Bewertungsgruppe B eingeordnet werden. Zur idealen Kompensation von 20 mm dickem Baustahl war eine AC-Leistung von 1,6 kW bei einer Frequenz von 636 Hz nötig. Mit steigender AC-Leistung konnte in allen Versuchsreihen eine sukzessive Verringerung der Wurzelüberhöhung demonstriert werden. T2 - Assistentenseminar 2016 der Wissenschaftlichen Gesellschaft Fügetechnik e.V. im DVS CY - Paewesin, Germany DA - 05.09.2016 KW - Elektromagnetische Schmelzbadunterstützung KW - Laserstrahlschweißen KW - Ferromagnetischer Stahl PY - 2018 SN - 978-3-96144-025-2 VL - 339 SP - 38 EP - 43 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-44302 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Straße, Anne A1 - Oster, Simon A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Maierhofer, Christiane T1 - Infrared Thermography of the DED-LB/M and PBF LB/M processes N2 - Infrared thermography is a technique that allows to measure the temperatures of objects by analyzing the intensity of the thermal emission without the need of direct contact with very high spatial and temporal resolution. As the temperature is a fundamental factor for the additive manufacturing processes of metals, infrared thermography can provide experimental data that can be used for the validation of simulations and improving the understanding of the processes as well as for in-situ process monitoring for nondestructive evaluation (NDE) for quality control. In this talk we will provide an overview over the possibilities of state of the art thermographic in-situ monitoring systems for the DED-LB/M and PBF-LB/M processes and the challenges such as phase transitions and unknown emissivity values in respect to the determination of real temperatures. We define the requirements for different camera systems in various configurations and give examples on the selection of appropriate measurement parameters and data acquisition techniques as well as on techniques for data analysis and interpretation. Finally, we compare in-situ monitoring methods against post NDE methods by analyzing the advantages and disadvantages of both. This research was funded by BAM within the Focus Area Materials. T2 - Coupled2021 - IX International Conference on Coupled Problems in Science and Engineering CY - Online meeting DA - 13.06.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition PY - 2021 AN - OPUS4-54399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Verfahrensentwicklung für die Prozessüberwachung in der additiven Fertigung - Thermografie N2 - Aktuell werden Prozessmonitoringsysteme in der additiven Fertigung (AM) zur Überwachung der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie zumindest im metallbasierten AM schon kommerziell angeboten. Weitere Verfahren aus den Bereichen der Optik, Spektroskopie und zerstörungsfreien Prüfung werden in der Literatur als geeignet für die in-situ Anwendung bezeichnet, es finden sich aber nur wenige Berichte über konkrete Umsetzungen in die Praxis. Die Bundesanstalt für Materialforschung und -prüfung hat ein neues Projekt gestartet, dessen Ziel die Entwicklung von Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Bauteile in AM-Prozessen mit Laser- bzw. Lichtbogenquellen ist. Verschiedene Verfahren der zerstörungsfreien Prüfung, wie Thermografie, optische Tomografie, optische Emissionsspektroskopie, Wirbelstromprüfung und Laminografie werden in verschiedenen AM-Prozessen zum Einsatz gebracht und die Ergebnisse fusioniert. Die evaluierten Ergebnisse werden mit Referenzverfahren wie Computertomografie und Ultraschall-Tauchtechnik verglichen. Ziel ist eine deutliche Reduzierung aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen nach der Fertigung des Bauteiles und zugleich eine Verringerung von Ausschussproduktion. Hier wird das Projekt als Ganzes vorgestellt und der Fokus auf verschiedene Methoden der Temperaturmessung mit Hilfe der Thermografie gelegt. Anforderungen an die Messtechnik für verschiedene AM-Systeme werden diskutiert und erste experimentelle Ergebnisse werden präsentiert. T2 - Innotesting 2019 CY - Wildau, Germany DA - 21.02.2019 KW - Additive Fertigung KW - Thermografie KW - Prozessüberwachung PY - 2019 AN - OPUS4-47457 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Anwendung der Laserimplantation zur Strukturierung verschleißgefährdeter Werkzeuge N2 - In einer Vielzahl technischer Anwendungen spielt die Aufrechterhaltung eines definierten Reibungs- und Verschleißverhaltens zwischen bewegten Oberflächen für die Sicherheit und Funktionalität eine entscheidende Rolle. Die Oberflächentechnik versucht durch geeignete Verfahren die Randschichten zu ertüchtigen, um Reibung und Verschleiß zu kontrollieren. Eine Verbesserung der Materialeigenschaften kann durch flächige Beschichtungen erreicht werden. Zusätzlich ermöglichen Oberflächenstrukturierungen breite Möglichkeiten zur Beeinflussung des Schmierungszustandes bzw. der Kontaktbedingungen. Neben Negativstrukturen bieten ebenfalls erhabene Mikrostrukturen großes Potenzial zur Beeinflussung des tribologischen Verhaltens. Ihr Einsatz ist aber aufgrund der besonderen Verschleißproblematik erhabener Strukturen momentan limitiert, so dass in der Regel zusätzliche verschleißreduzierende Beschichtungen notwendig werden. In diesem Beitrag wurde das Verfahren der Laserimplantation angewandt, mit dem erhabene und separierte Oberflächenstrukturen hoher Verschleißfestigkeit in einem Fertigungsschritt erzeugbar sind. Das Verfahren basiert auf einem lokalisierten Dispergieren von Hartstoffpartikeln. Hierfür wurde erstmalig ein gepulster Faserlaser mit hoher Strahlqualität zur Erzeugung punkt- und linienförmiger Mikrostrukturen angewandt. Versuche wurden auf dem Kaltarbeitsstahl X153CrMoV12 unter Anwendung von Titandiborid als Hartstoff durchgeführt. Anhand von Härtemessungen konnte gezeigt werden, dass sowohl punkt- als auch linienförmige Strukturen mit Härten über 1000 HV1 und einer feinkörnigen Mikrostruktur mit feinverteilten Hartstoffpartikeln herstellbar sind. Des Weiteren war es möglich, die Implantgeometrien, welche an Querschliffen und durch Weißlichtinterferometeraufnahmen erfasst wurden, durch die Pulsleistung und Pulsdauer zu steuern. T2 - 38. Assistentenseminar der WGF CY - Rabenau, Germany DA - 06.09.2017 KW - Laserimplantation PY - 2018 SN - 978-3-96144-028-3 VL - 342 SP - 24 EP - 33 CY - Düsseldorf AN - OPUS4-47295 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Elektromagnetische Porenreduktion beim Laserstrahlschweißen von Aluminium-Druckgusslegierungen N2 - Innerhalb der vorliegenden Untersuchung wurde ein elektromagnetisches Schmelzbadbeeinflussungssys-tem zur Reduktion des Porenanteils beim Laserstrahlschweißen von Aluminium-Druckguss verwendet. Hierbei wird der Unterschied der elektrischen Leitfähigkeiten zwischen Gas- bzw. Lufteinschlüssen und geschmolzenem Aluminium gezielt genutzt, um die im Schmelzbad eingeschlossenen Poren während des Laserstrahlprozesses zur Oberfläche zu verdrängen. Die dafür erforderlichen Lorentzkräfte werden durch ein oszillierendes Magnetfeld erzeugt. Bei den Laserstrahlschweißversuchen handelt es sich um Ein-schweißungen in Wannenlage (PA-Position) von 6 mm dickem Aluminium-Druckguss AC-AlSi9MnMg. Über einen zuvor optimierten Laserschweißprozess wurde durch zusätzlichen Einsatz eines elektromag-netischen Feldes dessen Wirkung hinsichtlich des Porengehaltes und der Oberflächenrauheit untersucht. Die Auswertung der Schweißnähte erfolgte anhand von Querschliffaufnahmen, Röntgenbildern sowie Computer-Tomographie (CT) Aufnahmen. In Abhängigkeit von der verwendeten magnetischen Fluss-dichte konnte eine Reduktion des Porenanteils von bis zu 75 % erzielt werden, wobei vor allem großvolu-mige Poren erfolgreich aus dem Schmelzbad entfernt werden konnten. Zudem konnte eine Reduktion der Oberflächenrauigkeit von ebenfalls bis zu 75 % erreicht werden. T2 - Assistentenseminar 2017 der Wissenschaftlichen Gesellschaft Fügetechnik e.V. im DVS CY - Rabenau bei Dresden, Sachsen, Germany DA - 06.09.2017 KW - Laserstrahlschweißen KW - Aluminium-Druckguss KW - Auftriebskräfte KW - Elektromagnetische Porenreduktion PY - 2019 SN - 978-3-96144-028-3 VL - 342 SP - 103 EP - 110 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-47622 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Laserimplantation von TiB2-Partikeln in X153CrMoV12 Kaltarbeitsstahl und ihr Einfluss auf die Materialeigenschaften N2 - Die Laserimplantation erlaubt die Herstellung verschleißbeständiger, erhabener Mikrostrukturen (Im-plants) auf Stahloberflächen, durch ein diskontinuierliches dispergieren von keramischen Partikeln mittels gepulster Laserstrahlung. Durch die flexible Anordnung separierter Implants zu komplexen Mustern erlaubt das Verfahren eine gezielte Oberflächenstrukturierung zur Beeinflussung des Reibungs- und Verschleißverhaltens. Insbesondere erwies sich Titandiborid (TiB2) als Implantationsmaterial für geeignet, da eine Manipulation der Implantgeometrie in einem breiten Bereich vorgenommen werden kann, ohne dass Materialdefekte, wie Risse oder Poren auftreten. Zudem weisen die Implants auf Kaltarbeitsstahlwerkzeugen Härtewerte von bis zu 1800 HV1 auf. Hierdurch lassen laserimplantierte Oberflächen eine deutlich höhere Verschleißbeständigkeit im Vergleich zu umschmelzstrukturierten Wirkflächen erwarten. Daher eignet sich das Verfahren insbesondere zur Strukturierung hochbelasteter Wirkflächen, wie sie an Umform- oder Schneidwerkzeugen zu finden sind. Ziel der Untersuchungen ist es, den Einfluss laserimplantierter TiB2-Partikel auf die Materialeigenschaften von X153CrMoV12 zu erkennen und geeignete Parameterbereiche zur Oberflächenstrukturierung zu identifizieren. Hierfür wurden im Rahmen der Arbeit die Laserparameter (Pulsleistung und -dauer) in einem breiten Parameterfeld variiert und vergleichende Untersuchungen an punktuell wiederaufgeschmolzenen Zonen sowie an TiB2 implantierten Zonen durchgeführt. High-Speed-Kameraaufnahmen ermöglichten die Beschreibung der Partikeleinbringung aus Vorbeschichtungen. Des Weiteren wurden an Schliffen (Mikro-) Härtemessungen durchgeführt, um die die Materialeigenschaften zu charakterisieren und den Einfluss der eingebrachten Hartstoffpartikel feststellen zu können. Die Materialmikrostruktur wurde abschließend an lichtmikroskopischen- sowie elektronenmikroskopischen Aufnahmen erfasst. Mithilfe der energiedispersiven Röntgenspektroskopie (EDX) sowie der Röntgendiffraktometrie (XRD) wurden die implantierten Bereiche hinsichtlich gebildeter Phasen analysiert. Die Ergebnisse zeigen, dass eine reine Umschmelzstrukturierung zu einer deutlichen Reduktion der Oberflächenhärte aufgrund hoher Restaustenitgehalte (γR) führt. Im Gegensatz dazu führt das Laserimplantieren von TiB2-Partikeln zu einer deutlichen Härtesteigerung in den kuppel- oder ringförmigen Implants. Härtewerte von bis zu 1800 HV1 resultieren aus dispergierten TiB2-Primärpartikeln sowie in-situ ausgeschiedenen Sekundärphasen, durch die der Restaustenitanteil deutlich reduziert wird. T2 - Assistentenseminar der Wissenschaftlichen Gesellschaft Fügetechnik e.V. (WGF), Eupen (Belgien) 2018 CY - Eupen, Belgium DA - 13.09.2018 KW - Laserimplantation KW - Oberflächenstrukturierung KW - X153CrMoV12 KW - Titandiborid PY - 2018 AN - OPUS4-46089 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -