TY - CONF A1 - Gook, S. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Verfahren zum fehlerfreien Laserstrahl-Hybridschweißen von gechlossenen Rundnähten T2 - DVS CONGRESS 2020 - DVS-Berichte N2 - In diesem Beitrag werden Ergebnisse der Untersuchungen eines Verfahrens zum fehlerfreien Laserstrahl Hybridschweißen von geschlossenen Rundnähten vorgestellt. Das Verfahren zielt auf die Vermeidung von Schweißimperfektionen im Überlappbereich einer laserstrahlhybridgeschweißten Rundnaht. Eine Strategie der Prozessführung beim Schließen der Rundnaht wurde entwickelt, mit der ein fehlerfreier Überlappbereich durch die Kontrolle der Erstarrungsbedingungen am Schweißnahtende erreicht wird. Die kontrollierte Wärmeführung wird durch eine Anpassung der Parameter von beiden beteiligten Schweißprozessen, dem Laserstrahl- sowie MSG­ Schweißprozess realisiert. Experimentelle Untersuchungen wurden an 12 mm bis 15 mm dicken Rohrabschnitten durchgeführt. Der Einfluss von Prozessparametern wie der Laserleistungsrampe und Rampenzeit, der Veränderung des Abbildungsmaßstabes und der Defokussierung des Laserstrahls auf die Erstarrungsbedingungen am Ende der Rundnaht wurde untersucht, um eine optimale Strategie zum Herausführen der Prozessenergie zu finden. Im Rahmen der experimentellen Untersuchungen konnte gezeigt werden, dass eine Defokussierung des Laserstrahls im Bereich zwischen 60 mm und 100 mm über einen kurzen Auslaufbereich der Naht von ca. 15 mm zu einer deutlich besseren Nahtausbildung im Überlappbereich führte. Es konnte eine günstige kelchförmige Schweißnahtform ohne eine Tendenz zur Rissbildung erzielt werden. Die Laseroptik mit motorisch angesteuertem Linsensystem ermöglichte dabei eine Vergrößerung des Laserstrahldurchmessers ohne eine Veränderung der Position des MSG-Lichtbogens relativ zur Bauteiloberfläche. T2 - DVS Congress 2020 CY - Online meeting DA - 14.09.2020 KW - Defokussierung KW - Endkrater KW - Laser-Hybridschweißen KW - Rundnaht KW - Überlappbereich PY - 2020 SN - 978-3-96144-098-6 VL - 365 SP - 855 EP - 860 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-51324 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Nahteigenschaftsverbesserung von dickwandigen laserstrahlgeschweißten Duplexblechen mittels pulveraufgetragenen Pufferschichten T2 - 40. Assistentenseminar der Füge- und Schweißtechnik N2 - Duplexstähle finden aufgrund ihrer Eigenschaften, wie der guten Korrosionsbeständigkeit, einer hohen Festigkeit bei gleichzeitig guter Duktilität häufig industrielle Anwendung. Durch die hohen Abkühlraten beim Laserstrahlschweißen weisen Schweißnähte jedoch anstelle eines ausgeglichenen Duplexgefüges einen deutlich erhöhten Ferritanteil, im Vergleich zum Basiswerkstoff, auf. Dies führt zu einer verringerten Duktilität sowie Korrosionsbeständigkeit. Um dieses Problem zu lösen, wurde ein Prozess entwickelt, der auf einer Kantenbeschichtung mit nickelhaltigem Zusatzmaterial der zu fügenden Bleche mittels Laser-Pulver-Auftragschweißen (LPA) basiert. Die resultierenden Schweißnähte wurden zerstörend anhand von Schliffbildern, EDX-Aufnahmen, Härtemessungen und Kerbschlagbiegeversuchen geprüft. T2 - 40. Assistentenseminar der Füge- und Schweißtechnik CY - Braunlage, Germany DA - 25.09.2019 KW - Laser-Pulver-Auftragschweißen; Laserstrahlschweißen, Duplex, Pufferschichten PY - 2020 VL - 357 SP - 131 EP - 140 PB - DVS Media CY - Düsseldorf AN - OPUS4-50144 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Quality improvement of laser welds on thick duplex plates by laser cladded buttering T2 - Lasers in Manufacturing (LiM) 2019 - Proceedings N2 - Because of its excellent corrosion resistance, high tensile strength and high ductility, duplex stainless steel 2205 offers many areas of application. Though laser beam welding accompanied by high cooling rates, duplex steels tend to perform higher ferrite contents in weld metal as the base metal, which leads to a reduction of ductility and corrosion resistance of the weld joint. To overcome this problem, a solution, based on buttering the plate edges by laser metal deposition (LMD) with material containing higher Ni concentrations prior to laser welding was suggested. In this context different process parameters for LMD process were investigated. In a second step the possibility of welding those edges defect free while achieving balanced austenite-ferrite ratio was verified with metallographic analysis, Electron Backscatter Diffraction (EBSD) and impact testing according to Charpy. T2 - Lasers in Manufacturing (LiM) 2019 CY - Munich, Germany DA - 24.06.2019 KW - Laser Metal Deposition; Laser Beam Welding; Duplex; Stainless Steel PY - 2020 SP - We_A31_4_4-1 EP - We_A31_4_4-6 PB - WLT (Wissenschaftliche Gesellschaft für Lasertechnik) AN - OPUS4-50143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gook, Sergej A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Vermeidung von Schweißimperfektionen im Überlappbereich bei laserstrahlhybridgeschweißten Rundnähten T2 - DVS Congress - Große Schweißtechnische Tagung N2 - Die Laserstrahl-Hybrid-Schweißtechnologie erweist sich in der schweißtechnischen Fertigung immer mehr als innovative Alternative gegenüber anderen Schweißverfahren. Obwohl das Laserstrahl-Hybridschweißverfahren viele wirtschaftliche Vorteile gegenüber herkömmlichen Schweißverfahren aufweist, wie z.B. große Einschweißtiefe und dadurch eine reduzierte Anzahl von Schweißlagen, geringe thermische Belastung des Grundwerkstoffes aufgrund reduziertem Wärmeeintrag, konnte das Schweißverfahren überwiegend für das Schweißen von Längsnähten demonstriert werden. Eine Vielzahl von Schweißaufgaben, z.B. beim Schweißen von Segmenten von Windkraftanlagen oder dem Orbitalschweißen beim Verlegen von Großrohrleitungen sieht vor, dass die zu schweißenden Bauteile mit einer Rundnaht zusammengefügt werden. Die schweißtechnische Herausforderung ist hier, dass beim Schließen einer Rundnaht mit der Entstehung eines fehlerbehafteten Überlappbereiches zu rechnen ist. Ein zentrales Problem im Überlappbereich einer laserstrahl- sowie laserhybridgeschweißten Rundnaht ist die Bildung von Imperfektionen wie Poren, Rissen sowie die Bildung eines Endkraters, welcher als geometrische Kerbe wirkt. Bisher liegen keine universellen Lösungen zur fehlerfreien Ausführung von geschlossenen Rundnähten beim Laserstrahl-Hybridschweißen vor. Diese Studie befasst sich mit der Entwicklung eines Verfahrens, mit dem die Entstehung von o.g. Schweißimperfektionen vermieden wird. Die Strategie der Prozessführung beim Schließen der Rundnaht sieht hervor, dass ein fehlerfreier Überlappbereich durch die Kontrolle der Erstarrungsbedingungen am Schweißnahtende erreicht werden kann. Die kontrollierte Wärmeführung wird durch eine Anpassung der Parameter von beiden beteiligten Schweißprozessen, dem Laserstrahl- sowie MSG-Schweißprozess realisiert. Im Rahmen dieser Arbeit wurde eine Serie von Schweißversuchen an 9,5 mm dicken Rohabschnitten aus hochfestem Pipelinestahl X100Q mit Variation der Prozessparameter wie der Laserleistung, der Defokussierung des Laserstrahls sowie der Endkraterfüllzeit im Überlappbereich der Rundnaht durchgeführt. Nachfolgend werden die erzielten Ergebnisse dargestellt und diskutiert. T2 - DVS-Studentenkongress 2019 CY - Dusseldorf, Germany DA - 16.09.2019 KW - Laserstrahlschweißen KW - Laserhybridschweißen KW - Rundnaht KW - Endkrater KW - Überlappbereich KW - Defokussierung PY - 2019 SP - 370 EP - 378 AN - OPUS4-49242 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool T2 - ICALEO 2019 - The International Congress on Applications of Lasers & Electro-Optics (Proceedings) N2 - The geometrical characteristics of the weld end crater are commonly used for the validation of numerical results in welding simulation. A semi-analytical model calculating the cooling stage of the welding process after the moving energy source is turned off has been developed. A solution for various combinations of heat sources and workpieces has been found. The theoretical limits for the heat transfer of the absorbed energy during cooling in a thin plate and a semi-infinite body were studied. It is shown that after turning off the energy source, an additional melting of the base material in longitudinal direction may occur. The developed technique is applied to complete-penetration keyhole laser beam welding of a 2 mm thick austenitic chromium-nickel 316L steel plate at a welding speed of 20 mm/s and a laser power of 2.3 kW. The results show a theoretical increase of the weld end crater length in comparison to the length of the steady-state weld pool of up to 19 %. A shift of the centre of the end crater, in which the solidification of the liquid metal ends, towards the tail of the end crater relative to the axis of the heat source at the time of its termination, was computed. The speed and the direction of crystallization of the molten material in the weld pool and the end crater were found to be different. A good agreement between the computational results and the welding experiments was achieved. T2 - ICALEO 2019 - The International Congress on Applications of Lasers & Electro-Optics (Proceedings) CY - Orlando, FL USA DA - 07.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - End-crater KW - Heat conduction PY - 2019 UR - http://icaleo.conferencespot.org/2019-proceedings?qr=1 SN - 978-1-940168-1-42 SP - 1 EP - 8 AN - OPUS4-49344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biegler, M. A1 - Khazan, P. A1 - Gazen, M. A1 - Rethmeier, Michael T1 - Improvement of numerical simulation model setup and calculation time in additive manufacturing-laser-metal-deposition components with an advanced modelling strategy T2 - Mathematical Modelling of Weld Phenomena 12 N2 - Rapid localized heating and cooling during additive manufacturing using laser deposition method (LMD) lead to loss of dimensional accuracy as well as cracking of built parts. Finite-Element welding simulations allow prediction of geometrical deviations and accumulated residual stresses as well as their optimization before conducting experiments. Due to the great length of stacked welds, calculation times for fully transient thermomechanical simulations are currently long, the calculation stability suffers from the high number of contact bodies in the model and the modelling effort is high, as the geometries need to be sliced and positioned layer-wise. In this contribution, an integrated modelling approach is demonstrated for a thin-walled LMD component made from 30 layers of 1.4404 (316L) stainless steel: Instead of the layer-by-layer modelling strategy commonly found in the literature, the whole component mesh is kept in one piece and the fully transient, layer-by-layer material deposition is implemented via element sets. In contrast to prior simulations, nonlinear contact between the layers does not have to be considered, significantly decreasing calculation times. The calculated distortions are compared to recently published, in-situ digital image correlation (DIC) measurements as well as numerical simulations conducted with the established layer-wise modelling strategy to judge result quality. Finally, the improvement in calculation time and ease-of-use is compared between both modelling approaches and conclusions regarding future usage for industrial-scale components are drawn. T2 - 12th International Seminar ‘Numerical Analysis of Weldability' CY - Graz, Austria DA - 23.09.2018 KW - Additive Manufacturing KW - Laser Metal Deposition KW - Distortion simulation KW - Calculation time KW - Directed energy deposition KW - Efficient modelling PY - 2019 SN - 978-3-85125-615-4 SN - 978-3-85125-616-1 DO - https://doi.org/10.3217/978-3-85125-615-4-52 SN - 2410-0544 VL - 2019 SP - 979 EP - 1003 PB - Verlag der Technischen Universität Graz CY - Graz AN - OPUS4-49274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bakir, Nasim A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Lamé curves approximation for the assessment of the 3-D temperature distribution in keyhole mode welding processes T2 - ICALEO 2019 - 38th International congress on applications of lasers & electro-optics (Proceedings) N2 - A novel approach for the reconstruction of an equivalent volumetric heat source from a known weld pool shape is proposed. It is based on previously obtained weld pool geometries from a steady-state thermo-fluid dynamics simulation. Hereby the weld pool dimensions are obtained under consideration of the most crucial physical phenomena, such as phase transformations, thermo-capillary convection, natural convection and temperature-dependent material properties. The algorithm provides a time and calibration efficient way for the reproduction of the weld pool shape by local Lamé curves. By adjusting their parameters, the identification of the finite elements located within the weld pool is enabled. The heat input due to the equivalent heat source is assured by replacing the detected nodes’ temperature by the melting temperature. The model offers variable parameters making it flexible and adaptable for a wide range of workpiece thicknesses and materials and allows for the investigation of transient thermal effects, e.g. the cooling stage of the workpiece. The calculation times remain acceptably short especially when compared to a fully coupled process simulation. The computational results are in good agreement with performed complete-penetration laser beam welding experiments. T2 - ICALEO 2019 - 38th International congress on applications of lasers & electro-optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Weld pool shape approximation KW - Keyhole mode laser beam welding KW - Numerical simulation KW - Superelliptic Lamé curves PY - 2019 UR - http://icaleo.conferencespot.org/2019-proceedings?qr=1 SN - 978-1-940168-1-42 SP - Paper # Macro 1002 AN - OPUS4-49310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biegler, M. A1 - Wang, J. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Automated tool-path generation for rapid manufacturing and numerical simulation of additive manufacturing LMD geometries T2 - ESTAD N2 - In additive manufacturing (AM) Laser Metal Deposition (LMD), parts are built by welding layers of powder feedstock onto a substrate. Applications for steel powders include forging tools and structural components for various industries. For large parts, the choice of tool-paths influences the build-rate, the part performance and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool path generation is essential for the usability of LMD processes. In this contribution, automated tool-path generation approaches are shown and their results are discussed for arbitrary geometries. The investigated path strategies are the classical approaches: “Zig-zag-” and “contour-parallel-strategies”. After generation, the tool-paths are automatically formatted into g-code for experimental build-up and ASCII for a numerical simulation model. Finally, the tool paths are discussed in regards to volume-fill, microstructure and porosity for the experimental samples. This work presents a part of the IGF project 18737N “Welding distortion simulation” (FOSTA P1140) T2 - 4th European Steel Technology and Application Days CY - Dusseldorf, Germany DA - 24.06.2019 KW - Additive manufacturing KW - Directed Energy Deposition KW - Path planning KW - DED KW - Mechanical properties KW - Porosity PY - 2019 SP - 1 AN - OPUS4-50045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El-Sari, B. A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Numerische Simulation einer AM-Prozesskette im DED Auftragschweißen T2 - RoundTable Simulating Manufacturing 20 N2 - Das DED Auftragschweißen ist ein additives Fertigungsverfahren für Metalle, bei dem das Material schichtweise auf ein Substrat aufgetragen wird. Die schnellen Temperaturzyklen rufen Spannungsgradienten im Bauteil hervor. Der schichtweise Aufbau der Bauteile verursacht eine anisotrope Mikrostruktur. Mittels nachgelagerter Wärmebehandlung können diese Effekte verringert werden. Im anschließenden Schritt der Prozesskette wird das additiv hergestellte Bauteil mittels Drahterodieren von dem Substrat abgetrennt. In diesem Beitrag wird eine thermo-mechanische Simulation der gesamten Prozesskette vorgestellt, welche den additiven Aufbau, Wärmebehandlung und das Abtrennen vom Substrat beinhaltet. Anstelle der in der Literatur üblichen schichtweisen Modellierungsstrategie für die DED Simulation wird das gesamte Bauteil in einem Stück vernetzt und der vollständig transiente, schichtweise Materialauftrag über Elementgruppen realisiert. Im Gegensatz zu früheren Simulationen muss der nichtlineare Kontakt zwischen den Schichten nicht berücksichtigt werden, was die Rechenzeiten deutlich verkürzt. Das Modell wurde validiert mittels Abgleiches des Verzugs aus Simulation und Experiment. Die Proben, bestehend aus DIN 1.4404 (AISI 316L), wurden nach jedem Prozessschritt 3D gescannt um den Verzug zu quantifizieren. Zusätzlich wurden Querschnitte und Härtetests nach Vickers von unterschiedlich behandelten Proben durchgeführt, um den Effekt der Wärmebehandlung auf die Mikrostruktur und die Härte des Bauteils zu untersuchen. T2 - 20. Roundtable Simulating Manufacturing CY - Marburg, Germany DA - 22.05.2019 KW - Numerische ISmulation KW - DED KW - AM KW - Laser-Pulver-Auftragschweißen PY - 2019 SP - 1 EP - 14 AN - OPUS4-50046 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stankevich, S. A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Rethmeier, Michael ED - Reisgen, U. ED - Schmidt, M. ED - Zaeh, M. ED - Rethmeier, Michael T1 - Measurement of thermal cycle at multi-pass layer build-up with different travel path strategies during DLMD process T2 - Laser in Manufacturing Conference 2019 N2 - The shape of the parts, created by the technology of direct laser metal deposition (DLMD), is influenced by various parameters, for example, the power and diameter of the laser source spot. The contribution of energy from the laser affects the temperature distribution in the formed layers. The changing temperature in the working area entails a Change in the geometry of the layers and affects the stability of the process. In this paper, experiments on the measurement of temperature cycles in the DLMD process with different directions of the filling track are carried out. An infrared camera was used to measure thermal cycles. The calibration of the acquired data (i.e. correspondence table between the intensity of thermal radiation of the material and the absolute temperature) was done with help of two-color pyrometer ex situ and in situ measurements. The experiments are carried out on two materials 316L and Inconel 718. The effect of the maximum temperature on the layer height is shown, and thermal cycles in the formation of layers for different filling strategies are presented. T2 - Laser in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Thermography KW - Direct Laser Metal Deposition PY - 2019 SP - 1 EP - 9 AN - OPUS4-48716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Laser-Plasma-Hybrid-Cladding: Possibilities in the combination 2 of arc and laser for deposition welding T2 - Lasers in Manufacturing Conference 2019 N2 - Plasma-Transferred-Arc (PTA) welding is a process that enables high deposition rates, but also causes increased thermal load on the component. Laser based Direct Energy Deposition (DED) welding, on the other hand, achieves a high level of precision and thus comparatively low deposition rates, which can lead to high processing costs. Combining laser and arc energy aims to exploit the respective advantages of both technologies. In this study, different possibilities of this process combination are presented using a PTA system and a 2 kW disk laser. This includes the combination in a common process zone as a highspeed plasma laser cladding technology (HPLC), which achieves process speeds of 10 m/min. Besides that it is being examined whether a pre-running plasma arc can be used to coat difficult-to-weld rail steel with a carbon content of 0.8 % due to a preheating effect. Furthermore, a smoothing of the coating by a plasma arc following the laser is investigated. T2 - Lasers in Manufacturing 2019 CY - Munich, Germany DA - 24.06.2019 KW - Plasma-Transferred-Arc KW - Direct Energy Deposition KW - highspeed plasma laser cladding KW - deposition welding PY - 2019 SP - 1 EP - 9 AN - OPUS4-48724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Karkhin, Victor A1 - Rethmeier, Michael ED - Sommertisch, C. ED - Enzinger, N. ED - Mayr, P. T1 - A novel approach for calculating the thermal cycle of a laser beam welding process using a stationary CFD model T2 - Mathematical Modelling of Weld Phenomena 12 N2 - This work aims to find the thermal cycles during and after fusion welding through simulation by first calculating the resulting local temperature field in the quasi-stationary part of the process. Here complete-penetration keyhole laser beam welding with a laser power of 18 kW on a 15 mm thick slab of a low-alloyed steel at a welding speed of 2 m/min is considered. In order to physically depict the laser material interaction a multi-physics numerical model including the effects of phase transformation, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature is developed. It uses a fixed keyhole geometry with a right truncated circular cone shape to introduce the laser beam energy to the workpiece. In a subsequent study, the resulting local temperature field is then used as an equivalent heat source in order to predict the unsteady thermal cycle during and after fusion welding. The translational movement of the laser beam through the workpiece is represented by a moving mesh approach. For the simulation, stationary heat transfer and fluid dynamics are described by a system of strongly coupled partial differential equations. These are solved with the commercial finite element software COMSOL Multiphysics 5.0. The results of the numerical simulation are validated by experiments, where the weld bead shapes and the thermal cycles show good correlation. T2 - 12th International Seminar "Numerical Analysis of Weldability" CY - Graz, Austria DA - 24.09.2018 KW - Equivalent heat source KW - Process simulation KW - Laser beam welding KW - Transient heat transfer KW - Moving mesh PY - 2019 SN - 978-3-85125-616-1 VL - 12 SP - Chapt. VI, 694 EP - 710 PB - Verlag der Technischen Universität Graz AN - OPUS4-48817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Biltgen, J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of Partial Penetration Laser Hybrid Welding Parameters on the Solidification Cracking for Thick-Walled Structures T2 - Lasers in Manufacturing Conference 2019 N2 - In this study, the influence of the welding speed and the arc power on the solidification crack formation for partial penetration laser hybrid welded Thick-Walled plates were investigated. Experimentally, a linear correlation between the welding velocity and the crack number was observed. That is by reducing the welding velocity the crack number was reduced. The reduced welding velocity showed a strong impact on stress, as the model demonstrated a very lower stress amount in comparison to the reference case. The reduction of the welding speed could be a helpful technique to reduce the hot cracking. The wire feed speed showed a very slight influence on the crack formation. That can be returned to the large distance between the critical region for cracking and the arc region. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Hybrid laser-arc welding KW - Solidification cracking KW - Thick-walled steel KW - Numerical simulation PY - 2019 SP - 1 EP - 7 PB - WLT Wissenschaftliche Gesellschaft Lasertechnik e.V AN - OPUS4-48733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ö. A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of the mechanical properties of single-pass hybrid laser-arc welded thick X120 pipeline steel plates T2 - Proceedings of the Pipeline Technology Conference 2019 N2 - With global increases in clean energy demand, the natural gas is gaining in importance. Pipelines are the safest and most cost-effective way of transporting natural gas. Due to high transport volume and resulting high operation pressure, the demand for ultra-high strength steel grades such as X120 is very strong. As a result of the fact that these steels are produced by thermo-mechanical controlled processing, the welding process must be selected accordingly. Based on investigations, a high heat input such as by submerged arc welding process leads to softening in the weld metal and loss of strength whereas pure laser beam welding results in high cooling rates and deteriorate toughness of the weld metal. The objective of this research is to investigate the influence of heat input to mechanical properties of hybrid laser-arc welded pipeline steels of grade X120. Test specimens with a thickness of 20 mm could be welded without preheating in a single-pass with different welding velocities to observe the largest possible parameter window of the heat input. The achieved V-notch impact energy for hybrid laser-arc welded samples was 144±37 J at a testing temperature of -40 °C. With a tensile strength of 930±4 MPa the requirements of API 5L was achieved. To prevent gravity drop-outs at the slow welding speeds, an electromagnetic weld pool support system was used, which works contactless and is based on generating Lorentz forces. It was therefore possible to control the cooling rate in order to meet the requirements of the mechanical properties. By adapting the electromagnetic weld pool support to the laser and laser hybrid welding process, the application potential of these technologies for industrial implementation can be drastically increased. T2 - 14th Pipeline Technology Conference CY - Berlin, Germany DA - 18.03.2019 KW - Mechanical properties KW - Hybrid laser arc welding KW - Pipeline steel X120 PY - 2019 UR - https://www.pipeline-conference.com/conferences/14th-pipeline-technology-conference-2019 SN - 2510-6716 SP - 1 EP - 10 AN - OPUS4-48970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ö. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Single-pass Hybrid Laser Arc Welding of Thick Materials Using Electromagnetic Weld Pool Support T2 - Lasers in Manufacturing Conference 2019 N2 - Hybrid laser-arc welding process allows single-pass welding of thick materials, provides good quality formation of joints with minimal thermal deformations and a high productivity in comparison with arc-based welding processes. Nevertheless, thick-walled steels with a thickness of 20 mm or more are still multi-pass welded using arc welding processes, due to increased process instability by increasing laser power. One limitation factor is the inadmissible formation of gravity drop-outs at the root. To prevent this, an innovative concept of electromagnetic weld pool support is used in this study. With help of such system a stable welding process can be established for 25 mm thick steel plates and beyond. Sound welds could be obtained which are tolerant to gaps and misalignment of the welded parts. The adaptation of this system to laser and hybrid laser-arc welding process can dramatically increase the potential field of application of these technologies for real industrial implementation. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Full Penetration KW - Hybrid Laser Arc Welding KW - Electromagnetic Weld Pool Support KW - Thick Materials PY - 2019 SP - 1 EP - 8 PB - WLT Wissenschaftliche Gesellschaft Lasertechnik e.V. AN - OPUS4-48971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gook, S. A1 - El-Batahgy, A. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser arc welding of thick plates X8Ni9 for LNG tank construction T2 - Lasers in Manufacturing Conference 2019 N2 - Results of experimental investigations of the relationship between laser-hybrid welding process parameters, type of the filler metal and the mechanical properties of the welds made from 9% nickel cryogenic steel X8Ni9 are discussed. The results contribute to the development and conversion in the industrial practice a new laser beam-based welding technology for the automated manufacturing of LNG tanks. The remarkable heterogeneity in the chemical composition of the weld metal as well as an insufficient impact toughness could be indicated by using austenitic filler wire. The most promising results were achieved by applying 11%Ni filler wire, which is similar to the base material. A correlation between impact toughness and wire feeding speed could be shown. The highest impact toughness was 134 J at -196°C. The laser-hybrid welds passed the tensile test. The failure stress of 720 MPa with a fracture location in the base metal was achieved for all samples tested. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - X8Ni9 KW - Hybrid Laser Arc Welding KW - Cryogenic Steel KW - Low Temperature Toughness PY - 2019 SP - 1 EP - 11 PB - WLT Wissenschaftliche Gesellschaft Lasertechnik e.V. AN - OPUS4-48972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uhlmann, E. A1 - Düchting, J. A1 - Petrat, T. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Heat treatment of SLM-LMD hybrid components T2 - Lasers in Manufacturing Conference 2019 N2 - Additive manufacturing is no longer just used for the production of prototypes but already found its way into the industrial production. However, the fabrication of massive metallic parts with high geometrical complexity is still too time-consuming to be economically viable. The combination of the powder bed-based selective laser melting process (SLM), known for its geometrical freedom and accuracy, and the nozzle-based laser metal deposition process (LMD), known for its high build-up rates, has great potential to reduce the process duration. For the industrial application of the SLM-LMD hybrid process chain it is necessary to investigate the interaction of the processes and its effect on the material properties to guarantee part quality and prevent component failure. Therefore, hybrid components are manufactured and examined before and after the heat treatment regarding the microstructure and the hardness in the SLM-LMD transition zone. The experiments are conducted using the nickel-based alloy Inconel 718. T2 - LiM 2019 CY - München, Germany DA - 23.06.2019 KW - Additive Manufacturing KW - Selective Laser Melting KW - Hybrid components KW - Inconel 718 KW - Laser Metal Deposition PY - 2019 SP - 1 EP - 9 AN - OPUS4-48410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. ED - Graf, B. ED - Schreiber, F. ED - Rethmeier, Michael T1 - Highspeed-Plasma-Laser Cladding (HPLC) als hybrides Beschichtungsverfahren: Evaluierung des Einsatzpotentials für hohe Prozessgeschwindigkeiten T2 - Große Schweißtechnische Tagung 2019 N2 - Das Plasma-Pulver-Auftragschweißen ist ein Verfahren, dass hohe Auftragraten ermöglicht, jedoch auch eine erhöhte thermische Belastung des Bauteiles verursacht. Laser-Pulver- Auftragschweißen hingegen erreicht eine hohe Präzision und eine geringe Aufmischung, erfordert jedoch ein kostspieliges Hochleistungslasersystem und erreicht im Vergleich nur geringe Auftragraten, was zu hohen Verarbeitungskosten führt. Eine Kopplung von Laser- und Lichtbogenenergie in einer gemeinsamen Prozesszone zielt darauf ab, die jeweiligen Vorteile beider Technologien zu nutzen. Dies betrifft insbesondere die Effizienz der Wärmeausnutzung und der Nutzung des Zusatzwerkstoffs. Es wird ein Plasma-Laser-Hybrid-Prozess als Highspeed-Plasma-Laser-Cladding-Technologie (HPLC) für Beschichtungs- sowie Instandsetzungszwecke vorgestellt. Gezeigt werden Ergebnisse mit Prozessgeschwindigkeiten von 10 m/min bei Laserleistungen von 2 kW, dabei können Flächenraten von mehr als 1 m2/h erreicht werden. Effiziente Beschichtungen von großen Flächen, beispielsweise auf rotationssymmetrischen Bauteilen stellen ein relevantes Anwendungsfeld für diesen Technologieansatz dar. Die Nickelbasislegierung Inconel 625 wird als Korrosionsschutzwerkstoff eingesetzt. Im Rahmen der Verfahrensprüfung werden die hergestellten Beschichtungen einer EDX Messung unterzogen. Prozesscharakteristische Kenngrößen wie z.B. die Auftragrate werden vorgestellt und vor dem Hintergrund wirtschaftlicher Kennzahlen diskutiert. Zusätzlich werden die Aufmischung, Spurgeometrie und Wärmeeinflusszone der Spuren und Schichten ausgewertet. Im Vergleich zum Laser-Pulver-Auftragschweißen werden Spuren bei hohen Prozessgeschwindigkeiten mit einer hohen Auftragrate erzeugt. T2 - DVS Congress 2019 CY - Rostock, Germany DA - 16.09.2019 KW - Highspeed-plasma-laser-cladding KW - Korrosionsschutz KW - Laser KW - Plasma KW - Auftragschweißen PY - 2019 SP - n.b. AN - OPUS4-49364 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A theoretical study of influence o f electromagnetic stirring on transport phenomena in wire feed laser beam welding T2 - ICALEO 2019 - 38th International congress on applications of lasers & electro-optics (Proceedings) N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly non-linear and multi-coupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modelling. A 3D transient multi-physical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph and the element distribution from the energy dispersive X-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. T2 - ICALEO 2019 - 38th International congress on applications of lasers & electro-optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2019 SN - 978-1-940168-1-42 SP - Paper # Macro 403 AN - OPUS4-49664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF ED - Marko, Angelina ED - Petrat, Torsten ED - Graf, Benjamin ED - Rethmeier, Michael T1 - Prognose der Oberflächenbeschaffenheit für die additive Fertigung mittels Laser-Pulver-Auftragschweißen T2 - Prognose der Oberflächenbeschaffenheit für die additive Fertigung mittels Laser-Pulver-Auftragschweißen N2 - In den letzten Jahren hat vor allem die Nachfrage nach additiven Fertigungstechnologien und Reparaturverfahren für Hochfeste Werkstoffe einen starken Aufschwung erlebt. Ein Verfahren, welches sich neben der Herstellung von Beschichtungen besonders für diese Anwendungen eignet, ist das Laser-Pulver-Auftragschweißen. Es wird besonders für Reparaturen bzw. zur Herstellung von teuren Bauteilen, wie Werkzeuge oder Turbinenteilen, eingesetzt. Da diese Teile oft großen mechanischen sowie thermischen Belastungen ausgesetzt sind, ist es besonders wichtig, dass die erzeugte Struktur eine hohe Qualität aufweist. In dieser Arbeit wird die statistische Versuchsplanung genutzt, um Modelle für die Oberflächenbeschaffenheiten von Inconel 718 zu generieren. Als Grundlage dient hierbei ein zentral zusammengesetzter Versuchsplan mit großem Parameterfenster. So wird die Leistung zwischen 550 Watt und 1950 Watt, der Vorschub von 530 mm/min bis 920 mm/min, der Pulvermassenstrom von 3 g/min bis 12 g/min sowie der Spotdurchmesser von 1 mm bis 2 mm variiert. Auf diese Weise wird die Spurgeometrie beeinflusst. Darüber hinaus wird das Überlappungsverhältnis zwischen 20% bis 50% verändert. Die Auswertung der Oberflächenbeschaffenheit erfolgt mit dem auf der Fokusvariation basierendem Oberflächenmessgerät Alicona Infinite-Focus. Dieses Verfahren der 3D Mikrokoordinatenmesstechnik gewährleistet eine zuverlässige Auswertung der Spurgeometrie, der Welligkeit sowie die Messung der mittleren arithmetischen Höhe Sa zur Bestimmung der Oberflächenrauheit. Anschließend werden die generierten Modelle verifiziert. Ziel dabei ist, kostenintensive Vorversuche in Zukunft einzusparen. Darüber hinaus wird das Prozessverständnis erweitert und signifikante Einflussfaktoren identifiziert. T2 - DVS Kongreß 2018 CY - Friedrichshafen, Germany DA - 17.09.2018 KW - Laser-Pulver-Auftragschweißen KW - Statistische Versuchsplanung KW - Oberflächenmessung KW - Additive Manufacturing PY - 2018 SN - 978-3-96144-036-8 VL - 2018 SP - 265 EP - 270 PB - DVS Media CY - Düsseldorf AN - OPUS4-47092 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Kersting, R. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Laser-plasma-cladding as a hybrid metal deposition-technology applying a SLM-produced copper plasma nozzle T2 - 10th CIRP Conference on Photonic Technologies N2 - Laser-Metal-Deposition (LMD) and Plasma-Transferred-Arc (PTA) are well known Technologies which can be used for cladding purposes. The prime objective in combining LMD and PTA as a Hybrid Metal Deposition-Technology (HMD) is to achieve high Deposition rates at low thermal Impact. Possible applications are coatings for wear protection or repair welding for components made of steel. The two energy sources (laser and Plasma arc) build a Joint process Zone and are configurated to constitute a stable process at laser powers between 0.4-1 kW (defocused) and Plasma currents between 75-200 A. Stainless steel 316L serves as filler material. For this HMD process, a Plasma Cu-nozzle is designed and produced by powder bed based Selective Laser Melting. The potential of the HMD Technology is investigated and discussed considering existing process. This paper demonstrates how the interaction of the two energy sources effects the following application-relevant properties: Deposition rate, powder Efficiency and energy Input. T2 - LANE 2018 CY - Fürth, Germany DA - 3.09.2018 KW - Laser-metal-deposition KW - Plasma-transferred-arc KW - SLM printed plasma torch KW - Laser-plasma hybrid PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-470999 UR - 10.1016/j.procir.2018.08.020 DO - https://doi.org/10.1016/j.procir.2018.08.020 SN - 2212-8271 VL - CIRP 74 SP - 738 EP - 742 PB - Sciencedirect CY - Berlin AN - OPUS4-47099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Rethmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding T2 - ICALEO 2018 - The International Congress on Applications of Lasers & Electro-Optics (Proceedings) N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO®) CY - Orlando, USA DA - 14.10.2018 KW - Bulging effect KW - High power laser beam welding KW - Numerical modelling KW - Solidification cracking PY - 2019 SP - 1 EP - 8 AN - OPUS4-47139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - About the origin of solidification cracking in laser welded thick-walled structures T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials N2 - In this study, a three-dimensional CFD-simulation model was developed to simulate the fluid flow in the weld pool. The CFD-model showed a bulging region in the middle of the depth, which is separated from the top surface and bottom surface by two narrowing regions. It can be concluded that the interaction of the movement of the laser source with the Marangoni vortex leads to a teardrop shape at the upper and bottom surface of the workpiece. Additionally, it shows that the bulging in the weld is a result of the backflows on the upper and lower sides due to the thermo-capillary-driven flows. The weld pool shape was used as a heat source in a two-dimensional thermomechanical model, which allows a highly accurate transformation of the weld pool dimensions obtained from the CFD model. This developed technique allows the consideration of physical aspects, which cannot be considered when using traditional heat sources. The mechanical model has shown that the chronological order of the solidification of the weld has a significant influence on the nature and distribution of the stresses in the weld. High tensile stress has been observed in the bulging region, i.e. in the susceptible region for solidification cracking, when compared to the other narrowing regions, which show compressive stress. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - Laser beam welding KW - Solidification cracking KW - Numerical simulation KW - Weld pool geometry KW - CFD-model KW - FE-model PY - 2018 SP - W-6, 1 EP - 10 CY - Aswan, Egypt AN - OPUS4-46735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Siayah, A. A1 - El-Batahgy, A. A1 - Khafagi, S. A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - A study on shielded metal arc welding of 9%Ni steel using non-conventional ferritic welding electrode for LNG facilities T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials N2 - The present research work aims at clarification of the effect of the welding electrode type on the mechanical properties of SMA welded joints of 9%Ni steel plates. Properties of produced SMA welded joints were evaluated using different non-destructive and destructive investigation methods. In comparison with the conventionally used Ni-based welding electrode ENiCrMo-3 (AWS A5.11), an experimentally produced non-conventional ferritic welding electrode with 11%Ni (ENi11-Company specification) has resulted in a better combination of the mechanical properties of SMA welded joints of this steel type for critical cryogenic applications. Besides, a positive economic impact for the experimentally produced non-conventional ferritic welding electrode, due to its lower cost, could be another attractive aspect. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - 9%Ni steel, KW - SMAW KW - Conventional Ni-based austenitic welding electrode KW - Mechanical properties KW - Ferritic welding electrode PY - 2018 SP - W-21, 1 EP - 3 AN - OPUS4-46736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El-Batahgy, A. A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Effect of laser-beam and hybrid-laser-arc welding parameters and filler metal on microstructure and mechanical properties of thick heat-treated steel X8ni9+Qt640 for cryogenic service T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials N2 - The present research work encloses results of experimental investigations of the interaction between welding process parameters for laser-beam and hybrid-laser-arc as well as type of the filler metal and the achievable mechanical properties of the weld joints on steel grade X8Ni9+QT640 for cryogenic service containing 9% nickel. The results obtained contribute to the development and conversion in the industrial practice a new laser beam-based welding technology for the automated manufacturing of facilities for the liquefaction, storage and the transport of natural gases (LNG facilities). The results show, that the martensitic microstructure of the laser weld metal including low amount of retained austenite not exceeding 3.5% leads to the relatively low V-notch impact energy. The remarkable heterogeneity in the chemical composition of the weld metal through the weld thickness could be recognized in the case of hybrid-laser-arc welding with ERNiCrMo-3 austenitic filler metal, what also led to insufficient impact toughness of the weld metall. The most promising results could be achieved by using 11%Ni filler wire, which is similar to the base metal and provides a homogeneous microstructure with uniform distribution of Ni through the weld seam. It is remarkable, that a correlation between Charpy impact toughness and wire feeding speed and respectively process heat input exists. The highest toughness values were 134±58 J at -196C. The both laser as well as laser-hybrid welds passed the tensile test. The failure stress of 720±3 MPa with a fracture location in the base material was achieved for all samples tested. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - Hybrid-laser-arc welding KW - Laser-beam welding, KW - Cryogenic steel KW - Microstructure KW - Tensile strength PY - 2018 SP - W-29, 1 EP - 10 AN - OPUS4-46738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Äquivalente Wärmequellenmodellierung beim Hochleistungslaserstrahlschweißen dicker Bleche T2 - 38. Assistentenseminar Füge- und Schweißtechnik N2 - Der vorgestellte Modellierungsprozess dient zur Abschätzung einer geeigneten äquivalenten Wärmequelle und Berechnung des thermischen Verhaltens beim Laserstrahlschweißen. Die Methode Kombiniert die Vorteile von gägngigen Simulationsverfahren und reduziert die berücksichtigte Anzahl an physikalischen Aspekten und Kalibrierungsparameter. Durch die modellierten physikalischen Phänomene konnten die Informationen über die Strömung im Schmelzbad und dessen Einfluss auf die resultierende lokale Temperaturverteilung und folglich auf das transiente Temperaturfeld gewonnen werden. Dadurch wurde die Simulatioszeit(inkl. Kalibrierungsaufwand) auf weniger als einen Tag Rechenzeit verringert. T2 - 38. Assistentenseminar Füge- und Schweißtechnik CY - Rabenau, Germany DA - 06.10.2017 KW - Äquivalente Wärmequelle KW - Bewegtes Gitter KW - Hochleistungslaserstrahlschweißen KW - Prozesssimulation KW - Knotenweise Zwangsbedingungen PY - 2019 SN - 978-3-96144-028-3 VL - 342 SP - 66 EP - 76 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-47699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Üstündag, Ö. A1 - Gook, S. A1 - Rethmeier, Michael T1 - Laserhybridschweißen von dickwandigen Stählen mit elektromagnetischer Schmelzbadunterstützung T2 - Schweissen in der maritimen Technik und im Ingenieurbau N2 - Die steigenden Anforderungen in Hinsicht auf Sicherheitsfaktoren von gefügten Bauteilen führen zu einer Zunahme der zu schweißenden Bauteildicken. Das Laserstrahl-Lichtbogen-Hybridschweißverfahren – verbreitet im industriellen Einsatz vor allem im Schiffs- und Windkraftanlagenbau – ermöglicht das einlagige Fügen von dickwandigen Strukturen. Eine Herausforderung stellt das Schweißen von dickwandigen Bauteilen mit reduzierter Geschwindigkeit in Wannenlage (PA-Position) da. Sie ist aufgrund des erhöhten hydrostatischen Druckes und die daraus resultierenden Tropfenbildung an der Wurzelseite bedingt realisierbar. Die im Rahmen dieser Studie eingesetzte elektromagnetische Schmelzbadunterstützung wirkt dem gravitationsbedingten Austropfen der Schmelze entgegen und kompensiert den hydrostatischen Druck. Dabei werden unterhalb der Schweißzone mit Hilfe eines extern angelegten oszillierenden Magnetfeldes Wirbelströme im Werkstück induziert, die eine nach oben gerichtete Lorentzkraft erzeugt. Die Lorentzkraft wirkt dem hydrostatischen Druck entgegen und stellt einen sicheren Schweißprozess ohne Tropfenbildung dar. Mit dem Hybridschweißverfahren mithilfe der elektromagnetischen Schmelzbadunterstützung gelingt es mit einem 20-kW Faserlaser bis zu 30 mm dicke Bleche in einer Lage zu schweißen. Bei 25 mm dicken einlagig geschweißten Platten aus S355 konnte ein Spalt bis 1 mm und ein Kantenversatz bis zu 2 mm sicher überbrückt werden. Die Reduzierung der Schweißgeschwindigkeit hat eine Verringerung der notwendigen Laserleistung zur Folge und begünstigt außerdem die mechanisch-technologischen Eigenschaften, infolge der reduzierten Abkühlgeschwindigkeit. Durch die geringe Martensitbildung führt dies zu einer Verbesserung der Kerbschlagzähigkeit. T2 - 19. Tagung in Hamburg - DVS CY - Hamburg, Germany DA - 24.04.2019 KW - Laser-Hybridschweißen KW - Elektromagnetische Schmelzbadunterstützung KW - Schweißen von kaltzähen Stählen PY - 2019 SP - 34 EP - 46 PB - DVS AN - OPUS4-47918 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study on the formation of a bulging region in partial penetration laser beam welding T2 - Mathematical Modelling of Weld Phenomena 13 N2 - A transient three-dimensional thermo-fluid dynamics numerical model was developed to study the formation of a bulging region in partial penetration laser beam welding. The model accounts for the coupling between the fluid flow, the heat transfer, and the keyhole dynamics by considering the effects of multiple reflections and Fresnel absorption of the laser beam in the keyhole, the phase transitions during melting and evaporating, the thermo-capillary convection, the natural convection, and the phase-specific and temperature-dependent material properties up to the evaporation temperature. The validity of the model was backed up by experimentally obtained data, including the drilling time, the weld pool length, the local temperature history outside the weld pool, the process efficiency, and a range of metallographic crosssections. The model was applied for the cases of partial penetration laser beam welding of 8 mm and 12 mm thick unalloyed steel sheets. The obtained experimental and numerical results reveal that the bulging region forms transiently depending on the penetration depth of the weld, showing a tendency to transition from a slight bulging to a fully developed bulging region between penetration depths of 6 mm and 9 mm, respectively. T2 - 13th International Seminar "Numerical Analysis of Weldability" CY - Seggau, Austria DA - 04.09.2022 KW - Laser beam welding KW - Deep penetration KW - Bulge formation KW - Numerical modeling PY - 2023 SN - 978-3-85125-968-1 SN - 978-3-85125-969-8 SN - 2410-0544 VL - 13 SP - 101 EP - 126 PB - Verlag der Technischen Universität Graz AN - OPUS4-58802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Kising, Pascal A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Rethmeier, Michael T1 - Numerical analysis of the dependency of the weld pool shape on turbulence and thermodynamic activity of solutes in laser beam welding of unalloyed steels T2 - Mathematical Modelling of Weld Phenomena 13 N2 - A three-dimensional numerical model was developed to accurately predict the steady-state weld pool shape in full penetration laser beam welding. The model accounts for the coupling between the heat transfer and the fluid dynamics by considering the effects of solid/liquid phase transition, thermo-capillary convection, natural convection, and phase-specific and temperature-dependent material properties up to the evaporation temperature. A fixed right circular cone was utilized as a keyhole geometry to consider the heat absorbed from the laser beam. The model was used to analyze the influence of the thermodynamic activity of solutes and turbulence on the weld pool shape. A mesh sensitivity analysis was performed on a hybrid mesh combining hexahedral and tetrahedral elements. For the case of full penetration laser beam welding of 8 mm thick unalloyed steel sheets, the dependence of the weld pool shape on the surface-active element sulfur was found to be negligible. The analysis of the results showed that a laminar formulation is sufficient for accurately predicting the weld pool shape since the turbulence has a minor impact on the flow dynamics in the weld pool. The validity of the numerical results was backed up by experimental measurements and observations, including weld pool length, local temperature history, and a range of metallographic crosssections. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Weld pool shape KW - Numerical modeling KW - Laser beam welding KW - Thermo-capillary convection KW - Turbulence PY - 2023 SN - 978-3-85125-968-1 SN - 978-3-85125-969-8 SN - 2410-0544 VL - 13 SP - 161 EP - 188 PB - Verlag der Technischen Universität Graz AN - OPUS4-58803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Putra, Stephen Nugraha A1 - Rethmeier, Michael T1 - Numerical analysis of the influence of an auxiliary oscillating magnetic field on suppressing the porosity formation in deep penetration laser beam alloys of aluminum alloys T2 - Mathematical Modelling of Weld Phenomena 13 N2 - The contactless magnetohydrodynamic technology has been considered as a potential and promising method to improve the weld qualities of deep penetration laser beam welding. In this paper, numerical investigations are conducted to study the influence of the auxiliary oscillating magnetic field on the porosity suppression in laser beam welding of 5754 aluminum alloy. To obtain a deeper insight into the suppression mechanism, a three-dimensional transient multi-physical model is developed to calculate the heat transfer, fluid flow, keyhole dynamic, and magnetohydrodynamics. A ray tracing algorithm is employed to calculate the laser energy distribution on the keyhole wall. A time-averaged downward Lorentz force is produced by an oscillating magnetic field. This force acts in the molten pool, leading to a dominant downward flow motion in the longitudinal section, which blocks the bubble migration from the keyhole tip to the rear part of the molten pool. Therefore, the possibility for the bubbles to be captured by the solidification front is reduced. The electromagnetic expulsive force provides an additional upward escaping speed for the bubbles of 1 m/s ~ 5 m/s in the lower and middle region of the molten pool. The simulation results are in a good agreement with experimental measurements. Based on the results obtained in this study, a better understanding of the underlying physics in laser beam welding enhanced by an auxiliary oscillating magnetic field can be provided and thus the welding process can be further optimized reducing the porosity formation. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Deep penetration laser beam welding KW - Oscillating magnetic field KW - Numerical simulation KW - Porosity KW - Molten pool behaviour PY - 2023 SN - 2410-0544 VL - 13 SP - 237 EP - 254 PB - Verlag der Technischen Universität Graz AN - OPUS4-58804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Chunliang A1 - Wu, Chuansong A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical analysis of ultrasonic vibration enhanced friction stir welding of dissimilar Al/Mg alloys T2 - Mathematical Modelling of Weld Phenomena 13 N2 - The ultrasonic vibration enhanced friction stir welding (UVeFSW) process has unique advantages in joining dissimilar Al/Mg alloys. While there are complex coupling mechanisms of multi-fields in the process, it is of great significance to model this process, to reveal the influence mechanism of ultrasonic vibration on the formation of Al/Mg joints. In this study, the acoustic-plastic constitutive equation was established by considering the influence of both ultrasonic softening and residual hardening on the flow stress at different temperatures and strain rates. And the ultrasonic induced friction reduction (UiFR) effect on friction coefficient in different relative directions at the FSW tool-workpiece interface was quantitatively calculated and analyzed. The Al/Mg UVeFSW process model was developed through introducing the above acoustic effects into the model of Al/Mg friction stir welding (FSW). The ultrasonic energy is stronger on the aluminum alloy side. In the stirred zone, there is the pattern distribution of ultrasonic sound pressure and energy. The heat generation at the tool-workpiece contact interface and viscous dissipation were reduced after applying ultrasonic vibra-tion. Due to the UiFR effect, the projection of friction coefficient and heat flux distributions at the tool-workpiece interface present a "deformed" butterfly shape. The calculated results show that ultrasonic vibra-tion enhanced the material flow and promoted the mixing of dissimilar materials. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Friction stir welding KW - Ultrasonic vibration KW - Al/Mg alloys KW - Numerical simulation PY - 2023 SN - 2410-0544 VL - 13 SP - 517 EP - 538 PB - Verlag der Technischen Universität Graz AN - OPUS4-58805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - A numerical study on the suppression of a detrimental weld pool profile in wire feed laser beam welding by magnetohydrodynamic technique T2 - Mathematical Modelling of Weld Phenomena 13 N2 - The weld quality and the possible defect formation are directly determined by the weld pool shape and the thermo-fluid dynamics therein. In this paper, an untypical weld pool profile, i.e., elongated at its top and bottom but narrowed at the middle, is found experimentally and numerically in the wire feed laser beam welding. The detrimental influence of the weld pool narrowing on the element transport is analyzed and discussed. A magnetohydrodynamic technique is utilized to suppress the narrowing, aiming at a more homogenous element distribution. It is found that a low-temperature region is formed in the middle of the weld pool due to the interaction of the two dominant circulations from the top and bottom regions. The weld pool is significantly narrowed due to the untypical growth of the mushy zone in the low-temperature region, which results in a direct blocking effect on the downward flow and the premature solidification in the middle region. The Lorentz force produced by a transverse oscillating magnetic field shows the potential to change the flow pattern into a single-circulation type and the low-temperature-gradient region is mitigated. Therefore, the downward transfer channel is widened, and its premature solidification is prevented. The numerical results are well validated by experimental measurements of metal/glass observation and X-ray fluorescence element mapping. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Thermo-fluid flow KW - Element transport KW - Laser beam welding KW - Magnetohydrodynamics KW - Multi - physical modeling PY - 2023 SN - 2410-0544 VL - 13 SP - 143 EP - 160 PB - Verlag der Technischen Universität Graz AN - OPUS4-58806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Chunliang A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Experimental and numerical study on grain refinement in electromagnetic assisted laser beam welding of 5754 al alloy T2 - Proceedings of the ICALEO 2023, 42ndt International Congress on Applications of Lasers & Electro-Optics N2 - Through experimental observation and auxiliary numerical simulation, this investigation studies the different types of grain refinement of 5754 aluminum alloy laser beam welding by applying a transverse oscillating magnetic field. Scanning electron microscope results have proved that the application of a magnetic field can reduce the average crystal branch width and increase its number. The interaction between the induced eddy current generated by the Seebeck effect and the applied external magnetic field produces a Lorentz force, which is important for the increase of the number of crystal branches. Based on the theory of dendrite fragmentation and the magnetic field-induced branches increment, the grain size reduction caused by the magnetic field is studied. Furthermore, the effects of the magnetic field are analyzed by combining a phase field method model and simulations of nucleation and grain growth. The grain distribution and average grain size after welding verifies the reliability of the model. In addition, the introduction of a magnetic field can increase the number of periodic three-dimensional solidification patterns. In the intersection of two periods of solidification patterns, the metal can be re-melted and then re-solidified, which prevents the grains that have been solidified and formed previously from further growth and generates some small cellular grains in the new fusion line. The magnetic field increases the building frequency of these solidification structures and thus promotes this kind of grain refinement. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, USA DA - 16.10.2023 KW - Laser beam welding KW - Magnetic field KW - Crystal branch development KW - Grain refinement KW - Periodic solidification pattern PY - 2023 SP - 1 EP - 10 AN - OPUS4-58809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical analysis of the effect of the metal vapor plume on the keyhole and the molten pool behavior during deep penetration laser beam welding T2 - Proceedings of the ICALEO 2023, 42ndt International Congress on Applications of Lasers & Electro-Optics N2 - The effect of the oscillating metal vapor plume on the keyhole and molten pool behavior during the laser beam welding of AlMg3 aluminum alloys is investigated by the experimental and numerical method. The real-time height of the metal vapor plume is measured by high-speed camera observation. The obtained experimental results are used to evaluate the additional heating source and laser beam attenuation caused by the scattering and absorption based on the Beer-Lambert theory. Furthermore, the dynamic behavior of the metal vapor plume is incorporated into a 3D transient heat transfer and fluid flow model, coupled with the ray tracing method, for the laser beam welding of the AlMg3 alloy. It is found that the additional heating resulting from the scattered and absorbed laser beam energy by the metal vapor plume significantly expands the shape of the molten pool on the top region. Moreover, the oscillating metal vapor plume caused the fluctuation of the molten pool shape. The probability of keyhole collapse at the bottom increases significantly to 72% due to the oscillating laser power induced by the laser beam attenuation. The internal interplay between the metal vapor plume, molten pool shape, and the keyhole collapse are obtained. The developed model has been validated by the experiments, which shows a good agreement. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, Illinois, USA DA - 16.10.2023 KW - Deep penetration laser beam welding KW - Numerical simulation KW - Oscillating vapor plume KW - Keyhole collapse PY - 2023 SP - 1 EP - 10 AN - OPUS4-58841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Srinivasan, Krishnanand A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser Metal Deposition of Rene 80 – Microstructure and Solidification Behaviour Modelling T2 - Lasers in Manufacturing Conference 2023 N2 - New developments in nickel-based superalloys and production methods, such as the use of additive manufacturing (AM), can result in innovative designs for turbines. It is crucial to understand how the material behaves during the AM process to advance industrial use of these techniques. An analytical model based on reaction-diffusion formalism is developed to better explain the solidification behavior of the material during laser metal deposition (LMD). The well-known Scheil-Gulliver theory has some drawbacks, such as the assumption of equilibrium at the solid-liquid interface, which is addressed by this method. The solidified fractions under the Scheil model and the pure equilibrium model are calculated using CALPHAD simulations. Differential scanning calorimeter is used to measure the heat flow during the solid-liquid phase transformation, the result of which is further converted to solidified fractions. The analytical model is compared with all the other models for validation. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Additive manufacturing KW - Laser metal deposition KW - Solidification behaviour KW - Analytical model KW - Nickel-based superalloy PY - 2023 SP - 1 EP - 10 AN - OPUS4-58612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, R. A1 - Bähring, S. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Künstliche Neuronale Netze zur Qualitätsprognose von Funktional Gradierten Materialien im laserbasierten Directed Energy Deposition T2 - 3. Fachtagung Additive Manufacturing N2 - Durch pulverbasiertes Directed-Energy Deposition lassen sich Gradierungen fertigen, um diskrete Materialübergänge zu vermeiden und die Lebensdauer von Hartschichten zu erhöhen. Die Kombination aus Stahl als Basiswerkstoff und einer verschleiß- und korrosionsbeständigen Co-Cr Legierung verspricht durch Vermeiden von Spannungskonzentrationen das Verhindern von Abplatzungen und Rissen in der Schutzschicht. Um die Qualität des gefertigten Bauteils zu beurteilen, liegen für solche Funktional Gradierten Materialien (FGM) wenig Erkenntnisse vor. Daher wird im Rahmen dieser Studie eine Methodik erarbeitet, um die relative Dichte eines Funktional Gradierten Materials auf Stahl und Co-Cr Basis mittels Maschinendaten zu bestimmen. Anschließend wird unter Einsatz eines künstlichen neuronalen Netzes anhand von Sensordaten die relative Dichte vorhergesagt. Das trainierte Netz erreicht eine Vorhersagegenauigkeiten von 99,83%. Abschließend wird eine Anwendung anhand von einem Demonstrator gezeigt. T2 - 3. Fachtagung Additive Manufacturing CY - Halle, Germany DA - 05.10.2023 KW - Directed Enery Deposition KW - Künstliche Neuronale Netze KW - Additive Manufacturing KW - DED KW - KI KW - AM PY - 2023 SP - 1 EP - 8 PB - SLV Halle AN - OPUS4-58692 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Verbesserung der Übertragbarkeit eines künstlichen neuronalen Netzes zur Qualitätsvorhersage beim Widerstandspunktschweißen von hochfesten Stählen T2 - DVS Congress 2023 Große Schweißtechnische Tagung N2 - Eine typische Automobilkarosserie kann bis zu 5000 Widerstandspunktschweißverbindungen aufweisen, welche hohen Qualitätsanforderungen genügen müssen. Daher ist eine durchgehende Prozessüberwachung unerlässlich. Die Transformation zur E-Mobilität in der Automobilindustrie und die damit einhergehende Reichweitenproblematik treiben die Entwicklung und Einführung neuer hochfester Stähle an. Dies resultiert in einem gesteigerten Fertigungsaufwand hinsichtlich einer stabilen Prozess-führung in der Fügetechnik. Um diesen Anstieg an Komplexität zu bewältigen, sind die Methoden der künstlichen Intelligenz ein geeignetes Mittel. Mit ihnen kann, durch Auswertung der Prozessparameter und -signale, die individuelle Schweißpunktqualität sichergesellt werden. Die Vorhersagegenauigkeit von neuen Daten, also das extrapolieren, stellt für die meisten Algorithmen eine große Herausforderung dar. In dieser Arbeit wird ein künstliches neuronales Netz zur Vorhersage des Punktdurchmessers von Widerstandspunktschweißungen anhand von Prozessparametern implementiert. Die Vorhersagegenauigkeit und Extrapolationsfähigkeit des Modells wird durch die Auswertung des dynamischen Widerstandssignals verbessert. Um die Extrapolationsfähigkeit zu untersuchen, wird die Vorhersagegenauigkeit des Modells mit Daten getestet, die sich in Bezug auf den Werkstoff und der Beschichtungszusammensetzung deutlich von den Trainingsdaten unterscheiden. Dazu wurden mehrere Schweißexperimente mit Werkstoffen verschiedener Hersteller durchgeführt und nur ein Teil der Daten in das Training einbezogen. Die Ergebnisse dieser Arbeit verdeutlichen den positiven Einfluss der Prozesssignale auf die Robustheit des Modells und die Skalierbarkeit der Algorithmen künstlicher neuronaler Netze auf Daten außerhalb des Trainingsraums. T2 - DVS Congress 2023 Große Schweißtechnische Tagung CY - Essen, Germany DA - 11.09.2023 KW - Widerstandspunktschweißen KW - Hochfester Stahl KW - Künstliche Intelligenz KW - Neuronales Netz KW - Fügequalität PY - 2023 SN - 978-3-96144-230-0 SP - 772 EP - 779 AN - OPUS4-58693 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmier, Michael T1 - Influence of the spatial laser energy absorption on the molten pool dynamics in high-power laser beam welding T2 - Proceedings of the ICALEO 2023, 42ndt International Congress on Applications of Lasers & Electro-Optics N2 - The spatial laser energy absorption inside the keyhole is decisive for the dynamic molten pool behaviors and the resultant weld properties in high-power laser beam welding (LBW). In this paper, a numerical simulation of the LBW process, considering the 3D transient heat transfer, fluid flow, and keyhole dynamics, is implemented, in which the free surface is tracked by the volume-of-fluid algorithm. The underlying laser-material interactions i.e., the multiple reflections and Fresnel absorption, are considered by an advanced ray-tracing method based on a localized Level-Set strategy and a temperature-dependent absorption coefficient. The laser energy absorption is analyzed from a time-averaged point of view for a better statistical representation. It is found for the first time that a noticeable drop of the time-averaged laser energy absorption occurs at the focus position of the laser beam, and the rest region of the keyhole has relatively homogenous absorbed energy. This unique absorption pattern may lead to a certain keyhole instability and have a strong correlation with the detrimental bulging and narrowing phenomena in the molten pool. The influence of the different focus positions of the laser beam on the keyhole dynamics and molten pool profile is also analyzed and compared. The obtained numerical results are compared with experimental measurements to assure the validity of the proposed model. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, USA DA - 16.10.2023 KW - Laser beam welding KW - laser energy absorption KW - molten pool KW - keyhole dynamics KW - numerical modeling PY - 2023 SP - 1 EP - 8 AN - OPUS4-58754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Untersuchung zum Elektronenstrahlschweißen von additiv gefertigtem Inconel 939 T2 - DVS-Berichte: Band 385 N2 - Hochfeste Nickelbasislegierungen wie Inconel 939 spielen eine wesentliche Rolle im modernen Turbinenbau. Additive Fertigungstechnologien eröffnen hierbei neue Möglichkeiten für die Verarbeitung, jedoch fehlen verlässliche Fügeprozesse für die Absicherung der additiven Prozesskette im Bereich Neuteilfertigung und Instandsetzung. Insbesondere Heißrisse stellen eine große Herausforderung an die Fügetechnik. Die vorliegende Untersuchung befasst sich daher mit dem Verhalten von additiv gefertigten Blechen aus Inconel 939 beim Elektronenstrahlschweißen. Es werden grundlegende Zusammenhänge zwischen Prozessparametern, Härte und Rissneigung betrachtet und Ansätze für eine Optimierung auf Basis statistischer Versuchsplanung aufgezeigt. Hierbei erfolgt eine Einteilung der Risse nach bestimmten Nahtbereichen. Risse am Nahtkopf können durch die Faktoren Vorschub und Streckenenergie sowie die Härte des Schweißgutes beeinflusst werden. Risse im Bereich der parallelen Nahtflanken stehen hingegen im Zusammenhang mit der Härte der Wärmeinflusszone. Ein abschließender Vergleich der angepassten Parameter mit der Ausgangssituation zeigt, dass durch Anwendung der statistischen Optimierung eine deutliche Reduzierung der Rissneigung erreicht werden kann. T2 - 42. Assistentenseminar Fügetechnik CY - Beverungen, Germany DA - 06.10.2021 KW - Elektronenstrahlschweißen KW - Additive Fertigung KW - Schweißnahtbewertung PY - 2022 SN - 978-3-96144-210-2 VL - 385 SP - 1 EP - 8 PB - DVS Media GmbH AN - OPUS4-57320 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Rethmeier, Michael T1 - Challenges in dynamic heat source modeling in high-power laser beam welding T2 - Proceedings of the ICALEO 2023, 42ndt International Congress on Applications of Lasers & Electro-Optics N2 - The amount of absorbed energy in the keyhole as well as its spatial and temporal distribution is essential to model the laser beam welding process. The recoil pressure, which develops because of the evaporation process induced by the absorbed laser energy at the keyhole wall, is a key determining factor for the macroscopic flow of the molten metal in the weld pool during high-power laser beam welding. Consequently, a realistic implementation of the effect of the laser radiation on the weld metal is crucial to obtain reliable and accurate simulation results. In this paper, we discuss manyfold different improvements on the laser-material interaction, namely the ray-tracing method, in the numerical simulation of the laser beam welding process. The first improvement relates to locating the exact reflection points in the ray tracing method using a so-called cosine condition in the determination algorithm for the intersection of the reflected rays and the keyhole surface. A second correction refers to the numerical treatment of the Gaussian distribution of the laser beam, whose beam width is defined by a decay of the laser intensity by a factor of 1/e2 thus ignoring around 14 % of the total laser beam energy. In a third step, the changes in the laser radiation distribution in the vertical direction were adapted by using different approximations for the converging and the diverging regions of the laser beam thus mimicking the beam caustic. Finally, a virtual mesh refinement was adopted in the ray tracing routine. The obtained numerical results were validated with experimental measurements. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, USA DA - 16.10.2023 KW - Laser beam welding KW - Laser energy distribution KW - Ray tracing KW - Numerical modeling PY - 2023 SP - 1 EP - 10 AN - OPUS4-58475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Putra, Stephen Nugraha A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Der Einfluss verschiedener räumlicher Diskretisierungsansätze des Ray-Tracing-Verfahrens bei der Simulation des Laserstrahltiefschweißen T2 - 43. Assistentenseminar Füge- und Schweißtechnik N2 - Die Wärmeverteilung des Lasers beim Laserstrahltiefschweißen ist für die Formgebung der Dampfkapillare und für die Schweißbaddynamik entscheidend. In dieser Arbeit werden die Laserwärmeverteilung und deren Einflüsse auf die Schweißbadtiefe sowie -breite numerisch anhand des Ray-Tracing-Verfahrens analysiert. Hierbei wird der La-serstrahl in mehreren Strahlenbündeln bzw. Subrays unterteilt. Diesbezüglich soll der Pfad der Subrays präzis be-rechnet werden, um die Dynamik der Dampfkapillare und des Schweißbades eines realen Schweißprozesses rich-tig abzubilden. Zu diesem Zweck beschäftigt sich die vorliegende Arbeit mit der Genauigkeitsverbesserung der Kontaktposition und der Reflexionsrichtung der Subrays auf der freien Oberfläche anhand der Level-Set-Methode. Um die Güte dieses Simulationsansatzes zu gewährleisten, wurde eine Gegenüberstellung mit den zwei klassischen Ray-Tracing-Verfahren mittels drei verschiedenen Benchmark-Testreihen durchgeführt. Anschließend wurden die Versuchsergebnisse zur Validierung der implementierten numerischen Ansätze verwendet. Im Rahmen dieser Arbeit kann es gezeigt werden, dass unterschiedliche Wärmeverteilung aufgrund der verschiedenen Ray-Tracing-Verfahren deutlich zu erkennen ist, welche wiederum die Schweißbaddynamik sowie die lokalisierte Dampfkapil-lardynamik stark beeinflussen. Ferner wurde es bestätigt, dass die implementierte Level-Set-Methode zu einer ge-naueren Ermittlung der Kontaktposition und der Reflexionsrichtung der Subrays und somit zu einer Verbesserung der simulierten Schmelzkontur führt. T2 - 43. Assistentenseminar Füge- und Schweißtechnik CY - Schwarzenberg/Erzgebirge, Germany DA - 27.09.2022 KW - Laser beam welding KW - Ray tracing method KW - Weld pool dynamics KW - Numerical modeling PY - 2023 UR - https://www.dvs-media.eu/de/neuerscheinungen/4584/43.-assistentenseminar-fuegetechnik SN - 978-3-96144-212-6 VL - 386 SP - 91 EP - 102 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-59119 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, R. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Laser-Pulver-Auftragschweißen von funktional gradierten Materialien auf Cobalt-Chrom Basis T2 - 43. Assistentenseminar Fügetechnik N2 - Um Bauteile vor Verschleiß und Korrosion zu schützen werden Beschichtungen aus resistenteren Materialien aufgetragen. Hierzu zählen unter anderen die Legierungen auf Cobalt-Chrom Basis. Der diskrete Materialsprung ist jedoch unter thermischen und mechanischen Belastungen häufig Ursache für das Versagen der Beschichtung. In dieser Arbeit werden daher Materialgradierungen von verschiedenen Stahllegierungen zu einer Cobalt-Chrom Basislegierung untersucht. Die Ergebnissen werden dafür auch mit Resultaten zu vorangegangenen Untersuchungen verglichen. Kern der Arbeit bilden geätzte Schliffbilder der Materialpaarungen und Auswertungen mittels Farbeindringprüfung sowie die metallografische Bestimmung der Porosität. Ziel der Arbeit ist ein defektfreier Aufbau der funktional gradierten Materialpaarungen. T2 - 43. Assistentenseminar Fügetechnik CY - Päwesin, Germany DA - 20.09.2023 KW - Directed Enery Deposition KW - Funktionally Graded Material KW - Additive Manufacturing KW - DED KW - FGM KW - AM PY - 2023 SN - 978-3-96144-212-6 SP - 1 EP - 6 PB - DVS Media GmbH AN - OPUS4-59116 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Seitz, G. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Wire Electron Beam Additive Manufacturing von niedriglegierten Zinnbronzen – Erreichbare Bauteileigenschaften und Prozessmerkmale T2 - Kupfer-Symposium 2023 Vortragsband N2 - Die Additive Fertigung gewinnt zunehmend an Bedeutung für die Verarbeitung von Kupferwerkstoffen im industriellen Umfeld. Hierbei wird verstärkt auf drahtförmige Ausgangswerkstoffe gesetzt, da diese Vorteile im Handling bieten, bereits aus der Schweißtechnik bekannt sind und sich zumeist durch geringere Beschaffungskosten auszeichnen. In den letzten Jahren entwickelte sich unter den drahtbasierten Verfahren der Directed-Energy-Deposition (DED) eine Prozessvariante unter Nutzung des Elektronenstrahls zur industriellen Marktreife. Dabei zeigt die Technologie Wire Electron Beam Additive Manufacturing (DED-EB) besondere Vorteile gegenüber anderen DED-Prozessen für die Anwendung an Kupfer. Um das Verfahren einem breiten Anwenderkreis in der Industrie zugänglich zu machen, fehlen jedoch Daten zu Leistungsfähigkeit, Prozessgrenzen und Anwendungsmöglichkeit- en. Die vorliegende Untersuchung beschäftigt sich mit dieser Problemstellung am Beispiel der Legierung CuSn1MnSi. Über mehrstufige Testschweißungen werden die physikalisch möglichen Prozessgrenzen ermittelt und Rückschlüsse über die Eignung der Parameter zum additiven Aufbau gezogen. An verschiedenen additiv gefertigten Probekörpern werden anschließend Kennwerte für Aufbaurate, Härte, Mikrostruktur, Oberflächenqualität sowie mechanische Festigkeitswerte ermittelt. Es zeigt sich, dass das die durch DED-EB hergestellten Proben, trotz des groben Gefüges sowie der thermischen Belastung im Aufbauprozess, in ihren Eigenschaften gut mit den Spezifikationen des Ausgangsmaterials übereinstimmen. T2 - Kupfersymposium 2023 CY - Jena, Germany DA - 29.11.2023 KW - Wire Electron Beam Additive Manufacturing KW - DED-EB KW - CuSn1 KW - Additive Fertigung PY - 2023 SN - 978-3-910411-03-6 SP - 28 EP - 33 PB - Kupferverband e. V. AN - OPUS4-59118 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Automatisierungs- und Regelkonzepte für das MSG-Engspaltschweißen - Pendel- und Füllgradregelung T2 - 37. Assistentenseminar Füge- und Schweißtechnik N2 - Das MSG-Engspaltschweißen eignet sich auf Grund der I-Nahtvorbereitung besonders für das wirtschaftliche Fügen bei hohen Blechdicken über 100 mm und bietet darüber hinaus zusätzliche technologische Vorteile. Für die automatisierte Anwendung des Verfahrens unter Produktionsbedingungen muss dabei die Prozesssicherheit auch für mitunter große Variationen der Spaltbreite entlang der Schweißnaht gesichert bleiben. In erster Linie betrifft dies bei mechanischer Auslenkung der Drahtelektrode die Adaption der Pendelbewegung auf die jeweilige Spaltbreite um eine ausreichende Flankenanbindung zu garantieren. Für die Online-Regelung der Pendelbewegung mittels Lichtbogensensorik wurde eine Methode implementiert die die notwendigen Pendelwinkel an jeder Nahtflanke unabhängig ermittelt und darüber hinaus Fehlstellungen des Brenners sowie Veränderungen des Kontaktrohrabstandes und der Prozessparameter eigenständig kompensiert. Eine Füllgradregelung auf Grundlage optischer Erfassung und Auswertung der Schweißnahtgeometrie wurde zusätzlich eingesetzt um bei veränderlichen Nahtquerschnittsflächen einen vorgegebenen, gleichbleibenden Lagenaufbau zu erzielen. T2 - WGF Assistentenseminar 2016 CY - Paewesin, Germany DA - 06.09.2016 KW - MSG-Engspaltschweißen KW - MAG Prozesssteuerung KW - Sensorik KW - Lichtbogensensorik KW - Profilvermessung PY - 2018 SN - 978-3-96144-025-2 VL - 339 SP - 1 EP - 7 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-44284 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - Towards the determination of real process temperatures in the LMD process by multispectral thermography T2 - Thermosense: Thermal Infrared Applications XLIII N2 - Due to the rapid thermal cycles involved in additive manufacturing of metals, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine their formation, in-process measurements of the temperature are needed. Since the part emissivity is strongly inhomogeneous and rapidly changing in the process, the applicability of thermography for the determination of thermodynamic temperatures is limited. Measuring the thermal radiation in different wavelengths simultaneously, temperature and emissivity can be separated. Here, we present results of a preliminary study using multispectral thermography to obtain real temperatures and emissivities in directed energy deposition (DED) processes. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 DO - https://doi.org/10.1117/12.2587881 VL - 2021 SP - 77 EP - 83 PB - SPIE AN - OPUS4-52516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Gornushkin, Igor B. A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - In-situ Prozessüberwachung beim Laser-Pulver-Auftragschweißen (LPA) mittels Thermografie, optischer Emissionsspektroskopie (OES) und Schallemissionsanalyse (SEA) T2 - 41. Assistentenseminar der Füge- und Schweißtechnik N2 - Vor allem in den letzten Jahren ist das Interesse der Industrie an der additiven Fertigung deutlich gestiegen. Die Vorteile dieser Verfahren sind zahlreich und ermöglichen eine ressourcenschonende, kundenorientierte Fertigung von Bauteilen, welche zur stetigen Entwicklung neue Anwendungsbereiche und Werkstoffe führen. Aufgrund der steigenden Anwendungsfälle, nimmt auch der Wunsch nach Betriebssicherheit unabhängig von anschließenden kostenintensiven zerstörenden und zerstörungsfreien Prüfverfahren zu. Zu diesem Zweck werden im Rahmen des von der BAM durchgeführten Themenfeldprojektes „Prozessmonitoring in Additive Manufacturing“ verschiedenste Verfahren auf ihre Tauglichkeit für den in-situ Einsatz bei der Prozessüberwachung in der additiven Fertigung untersucht. Hier werden drei dieser in-situ Verfahren, die Thermografie, die optische Emissionsspektroskopie und die Schallmissionsanalyse für den Einsatz beim Laser-Pulver-Auftragschweißen betrachtet. T2 - 41. Assistentenseminar der Füge- und Schweißtechnik CY - Magdeburg, Germany DA - 02.09.2020 KW - Laser-Pulver-Auftragschweißen (LPA) KW - Thermographie KW - Optische Emissionsspektroskopie (OES) KW - Schallemissionsanalyse (SEA) PY - 2021 SN - 978-3-96144-141-9 VL - 370 SP - 132 EP - 140 PB - DVS MEdia CY - Düsseldorf AN - OPUS4-53967 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Anwendung der Laserimplantation zur Strukturierung verschleißgefährdeter Werkzeuge T2 - 38. Assistentenseminar der Füge- und Schweißtechnik N2 - In einer Vielzahl technischer Anwendungen spielt die Aufrechterhaltung eines definierten Reibungs- und Verschleißverhaltens zwischen bewegten Oberflächen für die Sicherheit und Funktionalität eine ent-scheidende Rolle. Die Oberflächentechnik versucht durch geeignete Verfahren die Randschichten zu ertüchtigen, um Reibung und Verschleiß zu kontrollieren. Eine Verbesserung der Materialeigenschaften kann durch flächige Beschichtungen erreicht werden. Zusätzlich ermöglichen Oberflächenstrukturierun-gen breite Möglichkeiten zur Beeinflussung des Schmierungszustandes bzw. der Kontaktbedingungen. Neben Negativstrukturen bieten ebenfalls erhabene Mikrostrukturen großes Potenzial zur Beeinflussung des tribologischen Verhaltens. Ihr Einsatz ist aber aufgrund der besonderen Verschleißproblematik er-habener Strukturen momentan limitiert, so dass in der Regel zusätzliche verschleißreduzierende Be-schichtungen notwendig werden. In diesem Beitrag wurde das Verfahren der Laserimplantation angewandt, mit dem erhabene und sepa-rierte Oberflächenstrukturen hoher Verschleißfestigkeit in einem Fertigungsschritt erzeugbar sind. Das Verfahren basiert auf einem lokalisierten Dispergieren von Hartstoffpartikeln. Hierfür wurde erstmalig ein gepulster Faserlaser mit hoher Strahlqualität zur Erzeugung punkt- und linienförmiger Mikrostrukturen angewandt. Versuche wurden auf dem Kaltarbeitsstahl X153CrMoV12 unter Anwendung von Titandibo-rid als Hartstoff durchgeführt. Anhand von Härtemessungen konnte gezeigt werden, dass sowohl punkt- als auch linienförmige Strukturen mit Härten über 1000 HV1 und einer feinkörnigen Mikrostruktur mit feinverteilten Hartstoffpartikeln herstellbar sind. Des Weiteren war es möglich, die Implantgeometrien, welche an Querschliffen und durch Weißlichtinterferometeraufnahmen erfasst wurden, durch die Puls-leistung und Pulsdauer zu steuern. T2 - 38. Assistentenseminar Füge- und Schweißtechnik CY - Rabenau, Germany DA - 06.10.2017 KW - Laserimplantation PY - 2019 UR - https://www.dvs-media.eu/de/neuerscheinungen/3646/38.-assistentenseminar-fuegetechnik SN - 978-3-96144-028-3 VL - 342 SP - 24 EP - 34 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-47637 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ thermographic monitoring of the laser metal deposition process T2 - II International Conference on Simulation for Additive Manufacturing - Sim-AM 2019 N2 - In this paper shortwave infrared (SWIR) thermographic measurements of the manufacturing of thin single-line walls via laser metal deposition (LMD) are presented. As the thermographic camera is mounted fixed to the welding arm, an acceleration sensor was used to assist in reconstructing the spatial position from the predefined welding path. Hereby we could obtain data sets containing the size of the molten pool and the oxide covered areas as functions of the position in the workpiece. Furthermore, the influence of the acquisition wavelength onto the thermograms was investigated in a spectral range from 1250 nm to 1550 nm. All wavelengths turned out to be usable for the in-situ process monitoring of the LMD process. The longer wavelengths are shown to be beneficial for the lower temperature range, while shorter wavelengths show more details within the molten pool. T2 - Sim-AM 2019 - 2. International Conference on Simulation for Additive Manufacturing CY - Pavia, Italy DA - 11.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 UR - http://congress.cimne.com/SIM-AM2019/frontal/Doc/proceedings.pdf SN - 978-84-949194-8-0 SP - 246 EP - 255 AN - OPUS4-49086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Einfluss der Porosität auf die Duktilitätseigenschaften von additiv gefertigtem AlSi10Mg T2 - Additiv gefertigte Bauteile und Strukturen N2 - Die Werkstoffeigenschaften im selektiven Laserstrahlschmelz-Verfahren hergestellter Bauteile werden von einer Vielzahl technologischer Parameter beeinflusst, sodass sich die Fertigungsgüte verschiedener Anlagen voneinander unterscheiden kann. Vor diesem Hintergrund wurde in der vorliegenden Arbeit untersucht, inwiefern sich durch verschiedene nachgelagerte Wärmebehandlungen die Mikrostruktur und die quasistatischen Festigkeitseigenschaften von Proben aus der Aluminiumlegierung AlSi10Mg, die mit verschiedenen Anlagen, Pulvern, Belichtungsstrategien und Prozessparametern gefertigt wurden, harmonisieren lassen. Die Versuche zeigten u.a., dass die erheblichen Festigkeitsunterschiede im Ausgangszustand unabhängig von der angewendeten Wärmebehandlungsroute aufgehoben wurden. Dennoch wurden signifikante Unterschiede in der Duktilität ermittelt. Anhand umfangreicher Bruchflächenanalysen konnte nachgewiesen werden, dass die in der Bruchfläche ermittelte Porosität eine lineare Korrelation zu der Bruchdehnung aufwies. T2 - 5. Tagung des Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online Meeting DA - 04.11.2020 KW - Wärmebehandlung KW - Additive Fertigung KW - Laser powder bed fusion KW - AlSi10Mg KW - Ringversuch PY - 2020 SN - 2509-8772 VL - 405 SP - 93 EP - 104 AN - OPUS4-51657 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Seeger, Stefan A1 - Hilgenberg, Kai T1 - Measurement of particle emissions in Laser Powder Bed Fusion (L-PBF) processes and its potential for in-situ process monitoring T2 - Euro PM 2019 Proceedings N2 - Laser Powder Bed Fusion (L-PBF) is a promising additive manufacturing (AM) technology for metal part production especially for complex and lightweight structures or functional designs. In L PBF processes several by-products including welding plume and its condensates, spatter and ejected powder are generated during laser exposure. Investigations of micro- and nano-sized by-products have received little attention in literature. This study focuses on the analysis of particle emissions in L PBF of 316L stainless steel using a scattered light aerosol spectrometer and a fast mobility particle sizer spectrometer during the process which allows for in-situ analysis of particle sizes in the range of 6 nm to 100 µm. A distinct correlation of emission signals to part position can be revealed. In addition, a significant influence of laser scanning vector directions on emission signals is presented. Furthermore, differing powder layer thicknesses can be recognised by deviations in emission signals. T2 - Euro PM 2019 CY - Maastricht, The Netherlands DA - 13.10.2019 KW - Plume KW - Laser Powder Bed Fusion (L-PBF) KW - Additive Manufacturing (AM) KW - Spatter KW - Fume KW - Particle gas emission KW - Aerosol measurements PY - 2019 SP - 1 EP - 7 AN - OPUS4-49388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -