TY - THES A1 - Sprengel, Maximilian Franz-Arthur T1 - Study on the determination and the assessment of the residual stress in laser powder bed fused stainless steel structures N2 - Additive manufacturing processes offer extensive advantages for the design freedom of structures through layer-by-layer production. This enables high weight savings as well as the integration of functions such as cooling channels. This technology thus offers great potential to contribute to a sustainable future. The pioneer among these manufacturing processes is the powder bed fusion of metals with laser beams (PBF-LB/M). This process is characterised by high laser scanning speeds and highly localised heat input, which have a strong effect on the microstructure and thus also on the mechanical properties. For example, the austenitic steel 316L exhibits a cellular structure at the subgrain level. This microstructure feature leads to higher yield strengths and comparable ductility to conventionally processed 316L. In addition to the traditional applications of 316L steel in the petrochemical and nuclear industries, this enables new applications such as medical stents or bipolar plates for fuel cells with proton exchange membranes. However, the layer-by-layer production with high scanning speeds and localised heat input induces cooling rates in the order of 106 K.s-1. The large temperature gradients and the shrinkage restraints of each weld bead and layer lead to the development of complex residual stress fields. These reduce the material performance and can even lead to premature failure. Thus, the fatigue properties are severely affected by rapid crack growth or prematurely developing cracks. Furthermore, specimens may warp during PBF-LB/M or immediately when the components are separated from the build plate. Therefore, residual stress is one of the main disadvantages of PBF-LB/M, making it difficult for this technology to be more widely accepted in the industry. Based on the current state of the literature, the procedure for determining residual stress employing diffraction methods, the influence of the component geometry, as well as the inter-layertime (ILT) on residual stress and, lastly, suitable heat treatment strategies for relaxing residual stress in PBF-LB/M/316L, were identified as insufficiently researched areas. Determining residual stress is a major challenge. X-ray and neutron diffraction are particularly suitable for filigree structures, which can preferably be produced using PBF-LB/M. Here, the microscopic strain of the lattice planes is used to calculate the macroscopic residual stress. These methods are nondestructive and allow the spatial resolution of the bi-axial and tri-axial residual stress. In the present work, in-situ neutron diffraction tensile tests were performed to analyse the micromechanical behaviour of PBF-LB/M/316L. The suitability of the lattice planes for calculating the macroscopic residual stress was investigated. The (311) lattice plane was found to be the best option for determining the macroscopic residual stress in PBF-LB/M/316L. Furthermore, it was shown that the Kröner model can be used to calculate the X-ray diffraction constants despite the texture. Currently, both aspects are common practices in the determination of residual stress. The results presented here support the validity of this approach and increase the confidence in the experimentally determined residual stress, which has a positive effect on the assessment of quality concerning the safety of a component manufactured by PBF-LB/M. The geometry of a structure manufactured by PBF-LB/M determines the component stiffness and influences the thermal gradients during manufacture and ultimately the residual stress. The effect of smaller or larger dimensions (larger than 10 mm) on the residual stress is rarely considered. To investigate this aspect, representative test specimens with different thicknesses and lengths were produced. Hence, the influence of the geometry i.e., component stiffness on the residual stress was evaluated. The residual stress was determined using X-ray and neutron diffraction. The analysis of the residual stress showed that an increase in thickness leads to overall higher residual stress. In addition, it was shown that increasing the sample dimension leads to smaller residual stress gradients. Above a threshold value of a few millimetres, no significant change in the residual stress was observed. The ILT is inherent in every PBF-LB/M construction job and influences the thermal gradients during production and thus the residual stress. A change in wall thickness in a geometrically complex structure or a variation in the number of specimens in the construction process leads directly to a change in the ILT. To simulate this, specimens with different ILT were produced. The residual stress was determined by X-ray and neutron diffraction. The use of a short ILT resulted in higher surface residual stress, but lower volume residual stress. Here, the surface residual stress and the residual stress in the volume showed contrary behaviour. This was attributed to the complex heat conduction during the process, as shown by the thermographic measurements. To avoid distortion of the specimens or real components upon separation from the build plate or during post-processing steps, stress relief annealing is usually performed after the PBF-LB/M process. Based on standards for heat treatment of welded austenitic steels, heat treatments were performed at low (450 °C for four hours) and high (800 °C and 900 °C for one hour) temperatures. The results show that the heat treatment at 450 °C relaxed the residual stress by only 5 %. This low relaxation is due to the stability of the cell structures. The high-temperature heat treatment showed that 900 °C is required to dissolve the cell structure and achieve a relaxation of about 85 %. This result is in good agreement with the standards for stress relief annealing of welded austenitic steels. N2 - Additive Fertigungsverfahren bieten durch die schichtweise Herstellung weitreichende Vorteile für die Gestaltungsfreiheit von Strukturen und ermöglichen somit hohe Gewichtseinsparungen. Auch die Integration von Funktionen, beispielsweise Kühlkanäle, können unmittelbar während der Herstellung eingebracht werden. Damit bietet diese Technologie ein hohes Potential zu einer nachhaltigen Zukunft beizutragen. Der Vorreiter unter diesen Fertigungsprozessen ist das Pulverbettbasierte Schmelzen von Metallen mittels Laserstrahlen (PBF-LB/M). Dieser Prozess zeichnet sich durch hohe Laserscangeschwindigkeiten und eine stark lokalisierte Wärmeeinbringung aus, welche sich auf die Mikrostruktur und damit auch auf die mechanischen Eigenschaften auswirken. So weist der austenitische Stahl 316L eine zelluläre Struktur auf Subkornniveau auf, welche zu höheren Streckgrenzen jedoch nicht verringerter Duktilität im Vergleich zu konventionell verarbeitetem 316L führt. Dies ermöglicht, neben den traditionellen Einsatzgebieten des Stahls 316L in der petrochemischen und nuklearen Industrie, neue Anwendungen wie medizinische Stents oder Bipolarplatten für Brennstoffzellen mit Protonenaustauschmembran. Die schichtweise Fertigung mit hohen Scangeschwindigkeiten und lokaler Wärmeeinbringung bedingt jedoch Abkühlraten in der Größenordnung von 106 K.s-1. Die hohen Temperaturgradienten im Zusammenspiel mit den Schrumpfbehinderungen jeder Schweißraupe und Lage sorgen für die Entstehung komplexer Eigenspannungsfelder. Diese verringern die Beanspruchbarkeit des Materials und können sogar zu einem vorläufigen Versagen führen. So sind die Ermüdungseigenschaften durch ein rapides Risswachstum bzw. ein vorzeitig entstehender Riss durch Eigenspannungen stark beeinträchtigt. Des Weiteren kommt es vor, dass sich die Proben während des PBF-LB/M oder unmittelbar bei der Trennung der Bauteile von der Bauplatte verziehen. Daher sind die Eigenspannungen eines der Hauptnachteile des PBF-LB/M, die eine breitere Akzeptanz dieses Verfahrens in der Industrie erschweren. Ausgehend vom aktuellen Literaturstand, wurde die Vorgehensweise bei der Bestimmung der Eigenspannungen mittels Beugungsmethoden, der Einfluss der Bauteilgeometrie bzw. Bauteilsteifigkeit sowie der Zwischenlagenzeit auf die Eigenspannungen und zuletzt geeignete Wärmebehandlungsstrategien zur Relaxation der Eigenspannungen in PBF-LB/M/316L als unzureichend erforschte Bereiche identifiziert. Die Bestimmung der Eigenspannung ist eine große Herausforderung. Insbesondere bei filigranen Strukturen, welche vorzugsweise mittels PBF-LB/M hergestellt werden können, eignen sich die Röntgen- und Neutronenbeugung. Hierbei wird die mikroskopische Dehnung der Gitterebenen zur Berechnung der makroskopischen Eigenspannung verwendet. Diese Methoden sind zerstörungsfrei und ermöglichen die räumliche Auflösung der bi-axialen und tri-axialen Eigenspannungen. In der vorliegenden Arbeit wurden in-situ Neutronenbeugungszugversuche durchgeführt, um das mikromechanische Verhalten des PBF-LB/M/316L zu analysieren. Die Eignung der Gitterebenen zur Berechnung der makroskopischen Eigenspannung wurde untersucht. Die (311) Gitterebene erwies sich als die beste Option für die Bestimmung der makroskopischen Eigenspannung in PBF-LB/M/316L. Darüber hinaus wurde gezeigt, dass das Kröner-Modell trotz Textur zur Berechnung der Röntgenbeugungskonstanten verwendet werden kann. Derzeit werden beide Aspekte in der Bestimmung der Eigenspannungen standardmäßig angewandt. Die hier präsentierten Ergebnisse untermauern die Gültigkeit dieses Vorgehens und erhöhen das Vertrauen in den experimentell bestimmten Eigenspannungen, welches sich positiv auf die Beurteilung der Qualität hinsichtlich der Sicherheit eines durch PBF-LB/M gefertigten Bauteils auswirkt. Die Geometrie einer durch PBF-LB/M hergestellten Struktur bestimmt maßgeblich die Bauteilsteifigkeit und beeinflusst die thermischen Gradienten während der Herstellung und letztendlich die Eigenspannungen. Die Auswirkung kleinerer oder größerer Abmessungen (größer 10 mm) auf die Eigenspannungen wird derzeit oft nicht berücksichtigt. Um diesen Aspekt zu untersuchen, wurden repräsentative Probekörper mit unterschiedlichen Dicken und Längen hergestellt. Damit konnte der Einfluss der Geometrie bzw. Bauteilsteifigkeit auf die Eigenspannungen gezielt bewertet werden. Die Eigenspannungen wurden mittels Röntgen- als auch Neutronenbeugung bestimmt. Die Analyse der Eigenspannungen ergab, dass eine Erhöhung der Dicke zu insgesamt höheren Eigenspannungen führt. Zusätzlich wurde gezeigt, dass eine Vergrößerung der Probenabmessung zu kleineren Eigenspannungsgradienten führt. Oberhalb eines Schwellenwerts von wenigen Millimetern ändern sich die Eigenspannungen nicht mehr signifikant. Die sogenannte Zwischenlagenzeit (ILT) ist jedem PBF-LB/M-Bauauftrag inhärent und beeinflusst die thermischen Gradienten während der Herstellung und damit maßgeblich die Eigenspannungen. Ein Wanddickensprung in einer geometrisch komplexen Struktur bzw. einer Variation der Probenanzahl im Bauprozess führt unmittelbar zu einer Änderung der ILT. Um dies nachzubilden, wurden Proben mit unterschiedlichen ILT hergestellt. Die Eigenspannungen wurden mittels Röntgen- und Neutronenbeugung bestimmt. Die Verwendung einer kurzen ILT hat zu höheren Oberflächeneigenspannungen geführt, jedoch zu geringeren Volumeneigenspannungen. Hierbei zeigten die Oberflächeneigenspannungen und die Eigenspannungen im Volumen ein konträres Verhalten. Dies wurde auf die komplexe Wärmeleitung während des Prozesses zurückgeführt, wie die thermografischen Messungen zeigten. Um den Verzug der hergestellten Probekörper oder realen Bauteile bei der Abtrennung der Bauplatte oder in Nachbearbeitungsschritten zu vermeiden, wird in der Regel ein Spannungsarmglühen nach dem PBF-LB/M Prozess durchgeführt. Basierend auf Standards für die Wärmebehandlung von geschweißten austenitischen Stählen, wurden Wärmebehandlungen bei niedrigen (450 °C für vier Stunden) und hohen (800 °C bzw. 900 °C für eine Stunde) Temperaturen durchgeführt. Die Ergebnisse zeigen, dass die Wärmebehandlung bei 450 °C die Eigenspannungen um lediglich 5 % relaxierte. Diese geringe Relaxation ist auf die Stabilität der Zellstrukturen zurückzuführen. Die Hochtemperatur-Wärmebehandlung zeigte, dass 900 °C erforderlich sind, um die Zellstruktur aufzulösen und eine Relaxation von etwa 85 % zu erreichen. Dieses Ergebnis steht in guter Übereinstimmung mit den Standards für das Spannungsarmglühen geschweißter austenitischer Stähle. T3 - BAM Dissertationsreihe - 173 KW - Residual Stress KW - Powder Bed Fusion of Metals with Laser Beams KW - Austenitic Stainless Steel KW - Diffraction KW - Heat Treatment KW - Eigenspannungen KW - Pulverbettbasiertes Laserstrahlschmelzen KW - Austenitischer Rostfreier Stahl KW - Beugung KW - Wärmbehandlung PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579802 SN - 1613-4249 VL - 173 SP - 1 EP - 256 PB - Eigenverlag CY - Berlin AN - OPUS4-57980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Hesse, Almut T1 - Entwicklung immunchemischer Methoden zur Spurenanalytik der Sprengstoffe Nitropenta und Trinitrotoluol N2 - Pentaerythrityltetranitrat (PETN), ein in jüngster Vergangenheit häufig von Terroristen verwendeter Sprengstoff, ist äußerst schwer zu detektieren. Ein verbesserter Antikörper gegen PETN wurde durch Anwendung des Konzepts des bioisosteren Ersatzes entwickelt,indem ein Nitroester durch einen Carbonsäurediester ersetzt wurde. Biostere Moleküle haben eine ähnliche Struktur wie die Referenzsubstanz und zeigen eine vergleichbare biologische Wirkung. Dieser Ansatz führte zu polyklonalen Antikörpern mit extrem guter Selektivität und Sensitivität. Die Nachweisgrenze des Enzyme-Linked Immunosorbent Assays (ELISAs) beträgt 0,15 μg/L. Der Messbereich des Immunassays liegt zwischen 1 und 1000 μg/L. Die Antikörper sind sowohl hinreichend pH-stabil als auch robust gegen Lösungsmittelzusätze. Das Antiserum könnte auch für Schnelltests, Biosensoren, Mikro-Arrays und andere analytische Methoden verwendet werden. Für die Umweltanalytik von Trinitrotoluol (TNT) wurde eine Hochdruckflüssigkeitschromatographie (HPLC)-kompatible Affinitätssäule hergestellt. Druckbeständiges, poröses Glas hat sich als ein hervorragendes Trägermaterial herauskristallisiert. Um selektive anti-TNT-Antikörper für die Herstellung der Affinitätssäule aus den beiden verwendeten TNT-Seren zu isolieren, wurde eine Trennung an einer Dinitrophenyl-Affinitätssäule durchgeführt. Zur Optimierung der Immobilisierungsmethode wurden orangefarbene Dabsyl -Proteine synthetisiert und auf der Oberfläche gebunden. Die Färbung wurde als Indikator für die Immobilisierungsdichte verwendet. Wegen der hohen Affinitätskonstanten der polyklonalen anti-TNT-Antikörper der beiden Seren (5,1 bzw. 2,3∙109 L/mol) lässt sich TNT durch eine typische saure Elution der TNT-Affinitätssäule nur schwer eluieren. Aus diesem Grund wurde eine neuartige Elutionsmethode entwickelt, die irreversible, denaturierende, thermische Online -Elution. Diese eröffnet ein weites Anwendungsfeld, da so Affinitäten, die klass ischerweise aufgrund zu hoher Bindungskonstanten zwischen Ligand und Rezeptor nicht für die Affinitätschromatographie genutzt werden können, für die Analytik besser handhabbar werden. Die maximale Kapazität einer im Rahmen dieser Arbeit hergestellten Affinitätssäule (64,8 μL) betrug 650 ng TNT bzw. 10 μg/mL Säulenvolumen. Um die Immobilisierungsdichte der produzierten Affinitätssäulen zu bestimmen, wurde ein neues Verfahren entwickelt, da die üblichen spektroskopischen Proteinbestimmungsmethoden aufgrund der hohen unspezifischen Wechselwirkung mit dem Trägermaterial zur Proteinbestimmung nicht geeignet waren. Zur Quantifizierung von Proteinen oder Peptiden,die auf festen Trägern immobilisiert sind, wurde auf Grundlage einer HPLC-Trennung der aromatischen Aminosäuren Tyrosin (Tyr) und Phenylalanin (Phe) ohne vorherige Derivatisierung eine gegenüber der klassischen Aminosäureanalytik vereinfachte HPLC/UV-Methode entwickelt. Die Hydrolyse der Proteine und Peptide wurde durch Einsatz von Mikrowellentechnik beschleunigt, sodass nur 30 Minuten statt ca. 22 Stunden für das Standardprotokoll benötigt wurden, bei dem ein Hydrolyseröhrchen verwendet wird. Zur internen Kalibrierung wurden zwei Standardverbindungen, Homotyrosin (HTyr) und 4-Fluorphenylalanin (FPhe) verwendet. Die Nachweisgrenze (limit of detection, LOD) bei 215 nm ist sowohl für Tyr als auch für Phe 0,05 μM (~ 10 μg/L). Dieses neue Verfahren, das als Aromatische Aminosäureanalyse (Aromatic Amino Acid Analysis, AAAA) bezeichnet werden kann, wurde zur Proteinbestimmung von homogenen Proben mit Rinderserumalbumin (BSA) des Nationalen Instituts für Standards und Technologie der USA (NIST) validiert, wobei die Nachweisgrenze für Proteine mit 16 mg/L (~ 300 ng BSA) mit gängigen spektroskopischen Verfahren vergleichbar ist. Es liefert incl. der Hydrolysestufe eine verbesserte Genauigkeit mit einer relativen Standardabweichung von ca. 5%. T3 - BAM Dissertationsreihe - 158 KW - Affinitätschromatographie KW - Affinity chromatography KW - Polyklonale TNT-Antikörper KW - Immunassay KW - Aromatische Aminosäureanalyse KW - Polyclonal TNT-antibodies KW - Polyclonal PETN-antibodies KW - Immunoassay KW - Aromatic amino acid analysis KW - Polyklonale PETN-Antikörper PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-417566 SN - 1613-4249 VL - 158 SP - I EP - 234 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41756 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Oberleitner, Lidia T1 - Immunochemical determination of caffeine and carbamazepine in complex matrices using fluorescence polarization N2 - Pharmacologically active compounds are omnipresent in contemporary daily life, in our food and in our environment. The fast and easy quantification of those substances is becoming a subject of global importance. The fluorescence polarization immunoassay (FPIA) is a homogeneous mix-and-read format and a suitable tool for this purpose that offers a high sample throughput. Yet, the applicability to complex matrices can be limited by possible interaction of matrix compounds with antibodies or tracer. Caffeine is one of the most frequently consumed pharmacologically active compounds and is present in a large variety of consumer products, including beverages and cosmetics. Adverse health effects of high caffeine concentrations especially for pregnant women are under discussion. Therefore, and due to legal regulations, caffeine should be monitored. Automated FPIA measurements enabled the precise and accurate quantification of caffeine in beverages and cosmetics within 2 min. Samples could be highly diluted before analysis due to high assay sensitivity in the low μg/L range. Therefore, no matrix effects were observed. The antiepileptic drug carbamazepine (CBZ) is discussed as a marker for the elimination efficiency of wastewater treatment plants and the dispersion of their respective effluents in surface water. The development of a FPIA for CBZ included the synthesis and evaluation of different tracers. Using the optimum tracer CBZ-triglycine-5-(aminoacetamido) fluorescein, CBZ concentrations in surface waters could be measured on different platforms: one sample within 4 min in tubes or 24 samples within 20 min on microtiter plates (MTPs). For this study, a commercially available antibody was used, which led to overestimations with recovery rates up to 140% due to high cross-reactivities towards CBZ metabolites and other pharmaceuticals. For more accurate CBZ determination, a new monoclonal antibody was produced. In this attempt, methods for improving the monitoring during the production process were successfully applied, including feces screening and cell culture supernatant screening with FPIA. The new monoclonal antibody is highly specific for CBZ and showed mostly negligible cross-reactivities towards environmentally relevant compounds. Measurements at non-equilibrium state improved the sensitivity and selectivity of the developed FPIA due to slow binding kinetics of the new antibody. Additionally, this measure enables for CBZ determination over a measurement range of almost three orders of magnitude. The comprehensively characterized antibody was successfully applied for the development of sensitive homogeneous and heterogeneous immunoassays. The new antibody made the development of an on-site measurement system for the determination of CBZ in wastewater possible. After comprehensive optimization, this automated FPIA platform allows the precise quantification of CBZ in wastewater samples only pre-treated by filtration within 16 min. Recovery rates of 61 to 104% were observed. Measurements in the low μg/L range are possible without the application of tedious sample preparation techniques. Different FPIA platforms including MTPs, cuvettes and tubes were successfully applied. For the choice of the right format, the application field should be considered, e.g. desired sample throughput, usage for optimization or characterization of antibodies or if a set-up for routine measurements is sought for. For high sample throughput and optimization, FPIA performance on MTPs is advantageous. The best results for the application to real samples were obtained using kinetic FP measurements in cuvettes. T3 - BAM Dissertationsreihe - 154 KW - Antibody KW - Coffee KW - ELISA KW - Fluorophore tracer KW - Wastewater PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392506 SN - 978-3-9818270-2-6 SN - 1613-4249 VL - 154 SP - 1 EP - 124 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schmidt, Wolfram T1 - Design concepts for the robustness improvement of self-compacting concrete - Effects of admixtures and mixture components on the rheology and early hydration at varying temperatures N2 - In Europe a multi-national research project was initiated entitled “Rational Production and Improved Working Environment through Using Self-Compacting Concrete”, followed by another project entitled “Testing SCC”, which helped spreading the benefits of SCC to a wide range of appliers. This project was also the basis of a widely accepted European guideline on Self compacted concrete published by the European industry association bibm, CEMBUREAU, EFCA, EFNARC, ERMCO, which again builds the basis of the European standards for the testing of SCC (EN 12350, Parts 8 to 12) as well as for the actual modernisation of the European concrete standard EN 206-1. PY - 2014 SN - 978-90-386-3598-9 DO - https://doi.org/10.6100/IR771936 VL - 193 SP - 1 EP - 308 PB - Eindhoven University of Technology CY - Eindhoven, The Netherlands AN - OPUS4-30826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sonntag, Nadja T1 - Untersuchung magnetischer Streufelder in einem inhomogen verformten Baustahl mittels passiv-magnetischer Prüfverfahren N2 - Die Metal Magnetic Memory (MMM) Methode ist ein standardisiertes, zerstörungsfreies Prüfverfahren, das für die Detektion von lokal geschädigten Materialbereichen in ferromagnetischen Bauteilen oder Proben verwendet wird. Es basiert auf der Annahme lokaler magnetoelastischer Wechselwirkungen an Spannungskonzentrationsstellen, die schwache magnetische Streufelder an den geschädigten Prüfkörperoberflächen hervorrufen. Die MMM-Methode überträgt dabei die für einachsige und elastische Verformungen entwickelten magnetoelastischen Modellvorstellungen ohne weitere Anpassungen in den Schädigungskontext, der jedoch mehrachsige Beanspruchungen und elastisch-plastische Deformationsprozesse erwarten lässt. Das Ziel der Arbeit ist es daher, die gängigen MMM-Hypothesen zur Signalentstehung fach- und skalenübergreifend und unter stärkerer Berücksichtigung mechanischer und mikrostruktureller Aspekte zu überprüfen. Zu diesem Zweck wurden zum einen gekerbte Flachzugproben aus einem unlegierten Baustahl inhomogen elastisch-plastisch verformt und die entstehenden magnetischen Streufelder an deren Oberflächen mit einem Drei-Achsen-GMR-Magnetometer detektiert. Die so ermittelten Magnetfeld-verteilungen wurden für unterschiedliche Verformungszustände ortsaufgelöst und richtungsabhängig mit gemessenen Dehnungsverteilungen (digitale Bildkorrelation) und mit simulierten Lastspannungs-verteilungen korreliert. Die eingeschnürten Probenbereiche wurden zusätzlich topographisch mittels Streifenlichtprojektion und Weißlichtinterferenzmikroskopie vermessen, um den Magnetisierungs-prozess ebenfalls vor dem Hintergrund geometrischer Effekte diskutieren zu können. Um systematische, verformungsinduzierte Veränderungen der magnetischen Mikrostruktur (magnetischer Domänen) im polykristallinen, quasi-isotropen Material nachzuweisen, wurde zum anderen ein in dieser Arbeit entwickelter statistischer Ansatz der Domänenanalyse angewandt. Hierfür wurde das Material zunächst durch Härteeindrücke mehrachsig elastisch-plastisch verformt, und die verformten Probenbereiche wurden anschließend mit Hilfe der Bitterstreifentechnik hauptsächlich bei niedriger Vergrößerung lichtmikroskopisch untersucht. Die beobachteten makroskopischen Domänen-kontraste wurden über ein analytisches, kontaktmechanisches (ECM-) Modell und über Makro-Eigen-spannungsmessungen (energiedispersive Synchrotron-Beugungsuntersuchungen) charakteristischen Verformungszonen unter den Härteeindrücken zugeordnet. Die Ergebnisse dieser Untersuchungen belegen, dass die Entstehung der Streufelder – entgegen bisheriger Annahmen – nicht allein auf mechanische Spannungs- und Verformungsgradienten im Material zurückzuführen, sondern auch topographisch bedingt ist. Die Vernachlässigung überlagerter geometrischer Effekte kann zu sicherheitsrelevanten Fehlinterpretationen der magnetischen Signale führen. Einachsige magnetoelastische Modellvorstellungen sollten zudem nicht ohne Anpassungen auf komplexe Beanspruchungen übertragen werden, da u. a. sowohl mechanische Größen (wie Spannungen oder Dehnungen) als auch mikrostrukturelle Parameter (wie z. B. Versetzungsdichten) bei komplexen Belastungen als ortsabhängige Variablen behandelt werden müssen. Die in dieser Arbeit beobachteten Domänenkontraste lassen sich zweifelsfrei charakteristischen Verformungszonen zuordnen, mikro-strukturell jedoch nicht allein mit anzunehmenden Gradienten der Versetzungsdichte erklären. Statt-dessen entstehen beispielsweise lokale Verformungstexturen, die zusätzliche magnetische Anisotropien bewirken könnten. Da bisher weder die makroskopischen noch die mikrostrukturellen Ursachen der Streufeldentstehung hinreichend verstanden sind, scheint die MMM-Methode für die quantitative Bewertung des Schädigungszustands derzeit ungeeignet. N2 - The Metal Magnetic Memory (MMM) method is a standardized, nondestructive testing method used for the detection of locally damaged material areas in ferromagnetic components or samples. It assumes local magnetoelastic interactions in stress concentration zones, causing weak magnetic stray fields on the damaged specimen surfaces. The MMM method transfers magnetoelastic model conceptions developed for uniaxial and elastic deformations without further adjustments into the damage context, which is, however, associated with multiaxial stresses and elastic-plastic deformations. The objective of this thesis is therefore to verify prevalent MMM hypotheses concerning the signal generation, putting emphasis on complex mechanical and microstructural aspects of damage while using interdisciplinary and multi-scale approaches. To this end, on the one hand, notched tensile specimens made of an unalloyed structural steel were inhomogeneously (elastically and plastically) deformed and deformation-induced magnetic stray fields were then detected by a three-axis GMR magnetometer. The obtained surface magnetic field distributions were correlated with measured strain distributions (digital image correlation) and with numerically simulated mechanical stress distributions (finite element analysis). To enable discussions on the magnetization process against the background of geometrical effects, the necked specimen regions were additionally investigated using optical profilometry methods (fringe projection and white light interference microscopy). On the other hand, a newly developed meso-scale approach to magnetic domain analysis was applied to prove systematic, deformation-induced changes of the magnetic microstructure within the polycrystalline, quasi-isotropic material: After multiaxial elastic-plastic deformation of coupon specimens by hardness indentation, the deformed sample regions were studied by Bitter technique in optical microscopy, preferably at low magnification. The observed macroscopic domain contrasts were related to characteristic deformation zones below the indents by using an analytical model from the field of contact mechanics (ECM) and macro-residual stress measurements (obtained from energy-dispersive synchrotron diffraction experiments). It is demonstrated that the formation of magnetic stray fields, quite contrary to previous assumptions, results not only from mechanical (e.g. stress) gradients within the material, but is also topographically induced. The neglect of such superimposed geometric effects may also lead to safety-relevant misinterpretations of the magnetic signals. Furthermore, uniaxial magnetoelastic model concepts should not be applied to complex stress/strain conditions without adaptation since both mechanical quantities (such as stresses or strains) and microstructural parameters (such as dislocation densities) must be treated as location-dependent variables. The observed magnetic domain contrasts could clearly be assigned to characteristic deformation zones but cannot be explained solely by hypothesized gradients of the dislocation density. Instead, for example, local deformation textures emerge, which may cause additional magnetic anisotropies. The MMM method currently seems unsuitable for quantitative damage assessments of components or specimens since neither the macroscopic nor the microstructural origins of the stray field formation have yet been sufficiently understood. KW - Magnetoelastischer Effekt KW - Magnetische Domänen KW - Mehrachsige Verformung KW - Schädigung KW - Unlegierter Baustahl KW - Magnetoelastic effect KW - Magnetic domains KW - Multiaxial deformation KW - Damage KW - Structural steel PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484302 DO - https://doi.org/10.14279/depositonce-8524 SP - 1 EP - 117 CY - Berlin AN - OPUS4-48430 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Aristia, Gabriela T1 - Polyaniline/Silicon Dioxide Composite-Based Coating for Corrosion Protection in Geothermal Systems N2 - Geothermal energy is one of the cleanest renewable alternatives to reduce the dependency on fossil fuel [1, 2]. Despite its promising future, its implementation faces various challenges, one of them being corrosion processes. To implement this energy, hot fluids are pumped from a geothermal well. These hot fluids originate from deep within the earth, so consist of different ionic species and gases in a wide range of temperatures, which lead to their corrosive nature. In terms of geothermal energy resources, Indonesia is at the forefront, with the highest preserved geothermal energy in the world of about 29 GWe and 312 potential geothermal locations [3]. Geothermal wells in Sibayak (North Sumatera), Indonesia, belong to young stratovolcanoes and have operating temperatures varying from 36 °C at the near ground surface to 310 °C at the bottom of the well, which is liquid-dominated with acidic and saline properties [4, 5]. Therefore, this geothermal fluid creates an aggressive environment that is conducive to corrosion of the powerplant infrastructure. Parts of the geothermal powerplant infrastructure, such as pipelines and heat exchangers, are commonly made of metals, e.g. carbon steel and stainless steel. Consequently, they may undergo corrosion and scaling when exposed to the geothermal fluid, especially for carbon steel. To ensure the safety and longevity of a geothermal powerplant, the infrastructure is constructed of expensive corrosion resistant alloys [6–10], e.g., titanium and Ni-Cr based alloys, or carbon steel which needs to be protected by coatings or inhibitors. To address the corrosion of carbon steel in the geothermal environment, artificial geothermal water was used to simulate a geothermal well in Sibayak, Indonesia, with pH 4 and a saline composition of 1,500 mg/l Cl-, 20 mg/l SO42-, 15 mg/l HCO3-, 200 mg/l Ca2+, 250 mg/l K+, and 600 mg/l Na+. Carbon steel underwent the most severe corrosion at 150°C in an oxygen-containing solution with a corrosion rate of 0.34 mm/year, which is approximately ten times higher than that in the absence of dissolved oxygen. In all conditions, pitting corrosion was observed, which necessitate a protection strategy on carbon steel. In order to promote a cost effective and locally available option, this work focused on an easily applicable coating which utilized local resources. Toward developing such protective coating based on the locally available resources in Indonesia which can yield good corrosion resistance and thermal stability in geothermal environment, two additional components, i.e. polyaniline (PANI) and silicon dioxide, were used to modify an alkyd-based commercial coating. The selection of the alkyd-based coating as a matrix focused on the industrial convenience basis, where the coating application procedure should be simple and easy to apply within reasonable costs. The alkyd-based coating underwent severe blistering when exposed to the artificial geothermal water at 70 and 150°C due to the reaction between CaCO3 (as one of its components) and the artificial geothermal water, as well as a possible alkyd hydrolysis in the initial stage of exposure. In the oxygen-free solution, the degradation was controlled by chemical and thermal reactions, whereas in the aerated condition, oxidization at the coating surface further accelerated polymer degradation. PANI was chosen as one of the anticorrosion pigments which was widely developed over the past decades. To investigate the interaction between PANI and the artificial geothermal water, PANI film was electrochemically deposited on the carbon steel surface and exposed to the artificial geothermal water. Electrochemically synthesized oxalate-doped PANI was protective against corrosion of carbon steel in artificial geothermal water at room temperature. The mechanism involved an exchange of electroactive species within the coating layer, as confirmed by electrochemical impedance spectra. Interaction of ionic species, such as Cl-, Na+, Ca2+ from the artificial geothermal water, with the outer layer of PANI is suggested both at 25°C and 150°C, based on the EDX spectra of the coating surface after exposure to the artificial geothermal water. Thus, the protection mechanism of PANI is not solely based on the physical barrier layer properties, but rather associated with the redox mediated properties of PANI, which selectively allow ionic species intrusion from the electrolyte into the PANI layer. Although PANI is a promising candidate as an anticorrosion coating, its morphological characterization reveals that electrochemically deposited PANI is not stable for an application at 150°C. Therefore, another approach was used to promote better protective behavior of PANI by dispersing chemically synthesized PANI in the alkyd-based coating. To enhance the thermal stability of the coating, silicon dioxide (SiO2) was added, which was able to prolong the sustainability of coated metals until 28 days compared to the unmodified alkyd-based coating, which underwent a change in color to brown/orange only within 7 days of exposure. This improvement might be associated with the role of SiO2 to proportionate the thermal expansion coefficient of the coating system to be compatible with that of carbon steel. Although the coating is thermally enhanced, the electrolyte might still intrude through the coating resulting in the change of coating color after 28 days of exposure in the artificial geothermal water. When PANI was added, the coating system provided an active corrosion protection on the carbon steel surface. The chemical and morphological characterization of the PANI-alkyd and SiO2-alkyd coating system showed that coatings were improved, and no blisters were observed, albeit the degradation continued. Based on the results of exposure tests, the combined coating system was further investigated. The combinational coating of PANI/SiO2-alkyd was used with 2 wt% of PANI and 15 wt% of SiO2. Electrochemical tests indicated cathodic protection at 150°C, as the Ecorr of PANI/SiO2 remained approximately 400 mV lower than the carbon steel potential. The impedance spectra of the combinational coating of PANI/SiO2 showed a continuous decrease in the absolute impedance value over time. A significant decrease was observed within one day of exposure, followed by a slow gradual decrease, which might be associated with water absorption in the coating. FTIR spectra revealed that several peaks associated with the organic portion of the coatings were reduced after the specimens were exposed for 6 months. However, the absorption peaks related to the inorganic portion of the coatings remained stable until 6 months. Morphological characterization of the combinational coating of PANI/SiO2 showed that there were no blisters or significant discoloration of coatings after long-term exposure for 6 months in artificial geothermal water at 150°C, indicating that the chemical degradation does not significantly affect the functionality of the coating. This clearly shows the durability of PANI/SiO2 coating in the geothermal condition, suggesting that this coating can be used for such geothermal application. However, further testing of this coating should be conducted in a real geothermal environment on-site to ensure safety and viability. KW - Geothermal KW - Corrosion KW - Coating KW - Polyaniline KW - Electrochemical impedance spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:188-refubium-26704-6 UR - https://refubium.fu-berlin.de/handle/fub188/26704 DO - https://doi.org/10.17169/refubium-26461 SP - 1 EP - 175 CY - Berlin AN - OPUS4-51281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Fischer, Daniel T1 - Charakterisierung von dotierten Zinnoxidschichten für die Detektion von Gasen durch ellipsometrische Messung der Oberflächenplasmonenresonanz N2 - In der vorliegenden Dissertation wird die Verbesserung von Gassensoren durch Beschichtung mit dotierten Zinnoxidschichten untersucht, wobei zur Messung der Gase die Methode der oberflächenplasmonenresonanzverstärkten Ellipsometrie (SPREE) angewendet wurde. Die vorgestellten Ergebnisse unterteilen sich dabei in drei Schritte: Herstellung der Schichtsysteme, Analyse der chemischen, strukturellen und optischen Eigenschaften, sowie die Anwendung in der SPREE Gasmessung. Die dotierten Zinnoxidschichten wurden erfolgreich mittels Hochfrequenz-Magnetronsputtern hergestellt, indem das Zinnoxidtarget mit dem metallischen Dotierungsmaterial (Eisen bzw. Nickel) modifiziert wurde. Die chemische Analyse der Schichten wurde mit energiedispersiver Röntgenspektroskopie (EDX), Flugzeit-Sekundärionenmassenspektrometrie (TOF-SIMS) und Röntgenfluoreszenz unter streifendem Einfall (GI-XRF) durchgeführt. Die EDX Untersuchungen zeigten qualitativ, dass das Dotierungsmaterial in die Schicht eingebaut wurde. Mithilfe der TOF-SIMS Experimente konnte nachgewiesen werden, dass die Dotierungskonzentration innerhalb der Schicht heterogen verteilt ist und mithilfe der GI-XRF Messung konnte der Dotierungsgrad quantitativ mit ca. 10% bestimmt werden. Für die strukturelle Untersuchung wurden die Methoden der Rasterkraftmikroskopie (AFM) und Transmissionselektronenmikroskopie (TEM) ausgewählt. Die AFM Messungen zeigten, dass die Schichten eine mittlere quadratische Rauheit kleiner als 1 nm aufweisen und die Rauheit damit nicht als Faktor in der Gasmessung berücksichtigt werden muss. In den TEM Messungen wurde der Schichtaufbau bestätigt und gezeigt, dass in den dotierten Schichten nanokristalline Strukturen vorliegen. Die optische Charakterisierung der Schichten wurde mit spektraler Ellipsometrie (SE) durchgeführt, um die dielektrische Funktion in Abhängigkeit der Dotierung zu untersuchen. Dafür wurden Modelle für die dielektrische Funktion auf der Basis von mehreren Gauss-Funktionen entwickelt. Es zeigte sich, dass die undotierten Schichten sich wie typische Dielektrika mit Bandkanten >4 eV verhält und mit drei Gauss-Funktionen simuliert werden kann. Für die dotierten Schichten verschiebt sich die Bandkante, in Abhängigkeit vom Grad der Dotierung und dem Oxidationsgrad, zu bis zu 2.1 eV. Außerdem muss das Modell um eine zusätzliche Gauss-Funktion im nahen Infrarot erweitert werden, die auf die Anwesenheit von metallischen Nanopartikeln zurückzuführen ist. Weiterhin zeigte sich, dass die dielektrischen Eigenschaften von der Dicke der Schicht abhängen. Die Benutzung der Zusatzschichten in der SPREE Gasmessung zeigte, dass diese Schichten die Sensoroberfläche effektiv vor Degradation schützt. Weiterhin wurde nachgewiesen, dass die Sensitivität der jeweiligen Sensorschicht für bestimmte Gase von der Dotierung der Schicht abhängt. Es wurde gezeigt, dass eine Eisendotierung zu einer erhöhten Sensitivität für Kohlenmonoxid führt, während undotierte Schichten vor allem unpolare Alkane bevorzugen. Die Nickel-dotierten Schichten zeigten im Vergleich zur Eisendotierung deutlich schlechtere Ergebnisse für alle Gase. Diese Effekte wurden auf die unterschiedliche Bindungsstärke der Gase an die metallischen Nanopartikel und das Vorhandensein einer unterschiedlichen Zahl an Adsorptionsplätzen zurückgeführt. Für Wasserstoff wurden für alle Proben vergleichbare Ergebnisse gefunden, was darauf zurückzuführen ist, dass diese Moleküle aufgrund der geringen Größe und Masse in die Schicht diffundieren. Zusätzlich wurde das SPREE Verfahren signifikant verbessert, indem die Druckabhängigkeit Sensoren erstmals erfasst wurde. Weiterhin wurde die Auswertung weiterentwickelt, indem nur einzelne Parameter des Stokes-Vektors für die Gasmessung benutzt wurden. KW - Oberflächenplasmonen KW - Ellipsometrie KW - Transparente Halbleiter KW - Dotiertes Zinnoxid KW - Gasmessung PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435039 DO - https://doi.org/10.14279/depositonce-5969 SP - 1 EP - 154 PB - Technische Universität CY - Berlin AN - OPUS4-43503 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mieller, Björn T1 - Modellierungsansätze und neue Brennhilfsmittelkonzepte für die LTCC-Drucksintertechnologie N2 - Niedrigsinternde Glas-Keramik-Komposite (LTCC, low temperature co-fired ceramics) werden erfolgreich als kompakte, mehrlagige Schaltungsträger in der Automobilindustrie und Hochfrequenztechnik eingesetzt. Dazu werden sie mit Verfahren der Folien- und Multilayertechnik verarbeitet und gemeinsam mit aufgedruckten Metallisierungen bei Temperaturen bis 900 °C co-gesintert. Besonders bei hohen Anforderungen an die Reproduzierbarkeit der Sinterschwindung hat sich das Sintern mit axialer Druckunterstützung etabliert, wodurch unter anderem die Schwindung in der Ebene der Einzelfolien unterdrückt werden kann. Ziel der vorliegenden Arbeit war es, die LTCC-Drucksintertechnologie unter zwei Gesichtspunkten weiterzuentwickeln: • Erarbeitung eines einfachen und praktikablen Verfahrens zur Modellierung und Simulation des Verfahrens, • prozessintegrierte Erzeugung maßgeschneiderter, speziell dünnfilmfähiger Oberflächenstrukturen. Für die Simulation der Sinterung wurde das Modell der Mastersinterkurve ausgewählt. Die Eignung des Modells zur Beschreibung von LTCC-Werkstoffen wird zunächst ohne Druckunterstützung nachgewiesen. Dabei werden die Mastersinterkurven von frei gesinterten Pulverpresslingen und Folienlaminaten, deren Schwindung in der Ebene unterdrückt ist, quantitativ gegenübergestellt. Außerdem wird eine Methode vorgeschlagen und experimentell bestätigt, mit der die Schwindungsfehlpassung von Werkstoffkombinationen bei druckloser Co-Sinterung von berechnet werden kann. Die Modellierung der druckunterstützten Sinterung basiert auf thermomechanischen Analysen eines verbreitet angewendeten, kommerziellen LTCC-Werkstoffs (DuPont GreenTape DP951) im Druckbereich von 2 kPa bis 500 kPa. Die Auswertung der Messwerte und Entwicklung der Mastersinterkurven erfolgt unter Berücksichtigung der Kriechverformung des Werkstoffs unter Druck und wird durch grundlegende Untersuchungen zur für dieses Modell obligatorischen Bestimmung der Aktivierungsenergie ergänzt. Mit einer konstanten Aktivierungsenergie von 400 kJ/mol werden Mastersinterkurven für verschiedene Drücke aufgestellt und mit Anpassungsfunktionen modelliert. Die mit Hilfe der Anpassungsfunktionen simulierten Sinterkurven stimmen gut mit den Messungen überein. Das Modell wird als geeignet und praktikabel bewertet. Die prozessintegrierte Erzeugung maßgeschneiderter Oberflächenstrukturen erfolgt über die im Drucksinterprozess eingesetzten Brennhilfsmittel. Zur Einstellung gewünschter Rautiefen auf den gesinterten Oberflächen werden Opferfolien aus Al2O3 mit unterschiedlichen Partikelgrößenverteilungen und eine Opferfolie aus hexagonalem BN vorgestellt, die über Rückstandsschichten auf der LTCC-Oberfläche die Oberflächenstruktur bestimmen. Der Zusammenhang von Opferfolieneigenschaften und Oberflächencharakteristika wird an verschiedenen LTCC-Werkstoffen beschrieben. Die Rauheit einer druckgesinterten LTCC-Oberfläche kann über die Partikelgröße der Opferfolien gezielt verändert werden. Zur Herstellung dünnfilmkompatibler, rückstandsfreier Oberflächen im Drucksinterprozess wird glasartiger Kohlenstoff als Brennhilfsmittel eingeführt. Damit wird eine Regelung des Sauerstoffpartialdrucks während des Brandes erforderlich. Eine vollständige thermische Entbinderung der Grünfolien ist aufgrund von Kohlenstoffrückständen auf den Partikeloberflächen erst oberhalb 500 °C möglich. Einflüsse der Prozessparameter Druck und Haltezeit auf die resultierende Oberflächenstruktur werden aufgeklärt und optimale Prozessfenster für die untersuchten Werkstoffe angegeben. Mit dem entwickelten Verfahren können zum ersten Mal verschiedene LTCC-Substrate mit dünnfilmfähigen Oberflächen nacharbeitsfrei durch Drucksintern hergestellt werden. Die Ergebnisse zur Modellierung und Simulation leisten einen wertvollen Beitrag zur Einsparung von Energie, Zeit und Kosten bei der Gestaltung von Drucksinterprozessen. Die erarbeiteten Brennhilfsmittelkonzepte können ressourcenaufwändige Nacharbeit teilweise ersetzen und eröffnen durch die Dünnfilmeignung der Oberflächen neue Anwendungsgebiete der Drucksintertechnologie in der Sensor und Mikrosystemtechnik. T3 - BAM Dissertationsreihe - 136 KW - Glaskohlenstoff KW - low temperature co-fired ceramics KW - LTCC KW - Drucksintern KW - Mastersinterkurve KW - Opferfolie PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5106 N1 - Geburtsname von Mieller, Björn: Brandt, Björn - Birth name of Mieller, Björn: Brandt, Björn VL - 136 SP - 1 EP - 119 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-510 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -