TY - GEN A1 - Girard, L. A1 - Tung, S. A1 - Woydt, Mathias A1 - Bachelder, D. ED - Totten, G. E. ED - Shah, J. S. ED - Forester, D. R. T1 - Automotive engine lubricants N2 - In 2003, ASTM Manual 37, Fuels and Lubricants Handbook: Technology, Properties, Performance and Testing, featured a chapter discussing automotive lubricants, including engine oils, automatic transmission fluids, manual transmission fluids, gear lubricants, and greases. This chapter, by Schwartz, Tung, and McMillan, surveyed all of these classes of lubricants, up to its publication in 2003. More recently, the period between 2003 and 2010 has been addressed as part of a book copublished by ASTM and SAE International (coeditors Simon Tung and George Totten), where Fox surveyed the development of engine oil specifications that emerged during those years. This chapter surveys the evolution of engine oil design and testing since 2002 and concludes with insights into future directions offered by recent tribological research. Our objective is to provide a reader new to the field with an understanding of the following: - Engine oil composition and formulation - North American engine oil specification development, and an outline of emergent European specifications - How emergent specifications and legislative requirements are linked to the introduction of new engine hardware - How tribological innovation can contribute to future enhancements in engine efficiency In parallel, we will provide several tables comparing groups of contemporaneous specifications. KW - Engine oil design KW - Engine oil testing PY - 2019 UR - https://www.astm.org/mnl3720160034.html SN - 978-0-8031-7089-6 SN - 978-0-8031-7090-2 DO - https://doi.org/10.1520/mnl3720160034 SP - 753 EP - 863 PB - ASTM International CY - West Conshohocken, PA ET - 2 AN - OPUS4-53977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Fritsch, Tobias T1 - A Multiscale Analysis of Additively Manufactured Lattice Structures N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of lattice structures. These lattice structures shall be implemented in various industrial applications (e.g. gas turbines) for reasons of material savings or cooling channels. However, internal defects, residual stress, and structural deviations from the nominal geometry are unavoidable. In this work, the structural integrity of lattice structures manufactured by means of L-PBF was non-destructively investigated on a multiscale approach. A workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape. It was also observed that at least about 50% of the powder porosity was released during production of the struts. Struts are the component of lattice structures and were investigated by means of laboratory CT. The focus was on the influence of the build angle on part porosity and surface quality. The surface topography analysis was advanced by the quantitative characterisation of re-entrant surface features. This characterisation was compared with conventional surface parameters showing their complementary information, but also the need for AM specific surface parameters. The mechanical behaviour of the lattice structure was investigated with in-situ CT under compression and successive digital volume correlation (DVC). The Deformation was found to be knot-dominated, and therefore the lattice folds unit cell layer wise. The residual stress was determined experimentally for the first time in such lattice structures. Neutron diffraction was used for the non-destructive 3D stress investigation. The principal stress directions and values were determined in dependence of the number of measured directions. While a significant uni-axial stress state was found in the strut, a more hydrostatic stress state was found in the knot. In both cases, strut and knot, seven directions were at least needed to find reliable principal stress directions. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Surface roughness analysis KW - Computed tomography PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-470418 DO - https://doi.org/10.25932/publishup-47041 SP - 1 EP - 97 PB - Universitätsbibliothek Potsdam CY - Potsdam AN - OPUS4-53476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Umgebungsinduzierte Spannungsrissbildung (ESC) von PE-HD induziert durch äußerliche Einwirkung organischer Flüssigkeiten N2 - Polyethylen hoher Dichte (PE-HD) wird als Werkstoff für Rohre und Behälter für den Transport und zur Lagerung von Gefahrgütern verwendet. Für die Beurteilung und technische Freigabe dieser Materialien ist insbesondere das Verständnis des Schädigungsmechanismus des langsamen, umgebungsbedingten Spannungsrisses (engl.: „environmental stress cracking“, ESC) essentiell. ESC tritt bei relativ geringen auf einen Werkstoff einwirkenden mechanischen Spannungen auf. An lokalen Fehlstellen (z.B. Defekte, Inhomogenitäten, Kerben) beginnend wächst ein Riss langsam durch das Material und führt nach gewisser Zeit zu einem charakteristischen, pseudo-spröden Bruch. Dabei wird das Risswachstum durch äußere Medieneinwirkung zusätzlich entscheidend beeinflusst. Dieses langsame Risswachstum wird als Hauptursache für das plötzliche und unerwartete Versagen von Polymerwerkstoffen angesehen. Eine etablierte Prüfmethode zur Bewertung des Materialverhaltens gegenüber dieses Schädigungsmechanismus ist der Full-Notch Creep Test (FNCT), der für PE-HD Behältermaterialien üblicherweise unter Verwendung von wässrigen Netzmittellösungen (Arkopal N 100) durchgeführt wird. Die aus dem FNCT erhaltene Standzeit dient dabei als Bewertungskriterium für verschiedene PE-HD-Werkstoffe. In einer Studie wurden neben einer typischen Arkopal-N-100-Netzmittellösung praktisch relevante, organische Flüssigkeiten wie Biodiesel und Diesel als Testmedien verwendet, um deren Einfluss auf das ESC-Verhalten von PE-HD-Behältermaterialien zu charakterisieren. Neben der klassischen Standzeit-Auswertung erfolgte eine erweiterte Bruchflächenanalyse mittels Licht- (LM), Laserscanning- (LSM) und Rasterelektronenmikroskopie (REM). Insbesondere die LSM erlaubt eine schnelle und einfache Unterscheidung pseudo-spröder und duktiler Bruchbilder, die zur Beurteilung der Repräsentativität des FNCT für das dem Spannungsriss zugrundeliegenden langsamen Risswachstum von Bedeutung ist. T2 - Polymer Service GmbH Merseburg - "Lebensdauerabschätzung von Polymerwerkstoffen - Möglichkeiten und Grenzen" CY - Merseburg, Germany DA - 27.03.2019 KW - Environmental Stress Cracking (ESC) KW - Slow Crack Growth (SCG) KW - Spannungsriss KW - Polyethylen hoher Dichte KW - Full-Notch Creep Test (FNCT) KW - Bruchflächenanalyse KW - Laserscanningmikroskopie (LSM) PY - 2019 AN - OPUS4-52947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knorr, Annett A1 - Fayet, G. A1 - Rotureau, P. A1 - Wehrstedt, Klaus-Dieter T1 - Predictive Methods for Determining the Thermal Decomposition Properties of Hazardous Substances N2 - Due to the fast development and availability of computers, predictive approaches are increasingly used in the evaluation process of hazardous substances complementary to experiments. Their use was recommended as alternative to experimental testing by the REACH regulation to complete the lack of knowledge on properties for existing substances that must be registered before 2018 (upon quantities). Among the proposed predictive approaches, Quantitative Structure Property Relationships (QSPR) are powerful methods to predict macroscopic properties from the only molecular structure of substances. In that context, the HAZPRED project (2015-2018, founded by the SAF€RA consortium) aims to develop theoretical models (e.g. QSPR) and small-scale tests to predict complex physico-chemical properties (e.g. thermal stability, explosivity) of hazardous substances to complete the lack of knowledge on these hazardous substances quickly or to understand their decomposition behaviour better. In particular, this contribution will present the work done in this project on the physical hazards of organic peroxides and self-reactive substances: gathering of existing experimental data, new experimental campaigns, review of existing models and proposition of new estimation methods. KW - QSPR KW - HAZPRED KW - Organic peroxides KW - Self-reactive substances PY - 2019 UR - https://www.aidic.it/ DO - https://doi.org/10.3303/CET1977057 SN - 2283-9216 VL - 77 SP - 337 EP - 342 PB - AIDIC CY - Milano AN - OPUS4-51282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schnieder, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Additive Fertigung von Nickel-Titan-Formgedächtnislegierungen aus den Elementpulvern mittels Laserpulverauftragschweißen N2 - Additive Fertigungsverfahren gewinnen aufgrund der schnellen, flexiblen und kosten-günstigen Fertigung von Bauteilen zunehmend an Bedeutung. Das Laserpulverauf-tragschweißen (LPA) wurde anfangs hauptsächlich als Beschichtungsverfahren ein-gesetzt. Diese Technologie bewerkstelligt aber auch das Reparieren von verschlisse-nen Bauteilen, sodass diese zeitsparend und ressourcenschonend erneuert werden können. Die hohe Aufbaurate, die flexible Pulverzusammensetzung sowie die hohe Endkonturnähe ermöglichen heutzutage die Entwicklung und additive Fertigung von neuen Materialien, wie zum Beispiel Nickel-Titan-Formgedächtnislegierungen. T2 - 39. Assistentenseminar CY - Eupen, Germany DA - 12.09.2018 KW - Laserpulverauftragschweißen PY - 2019 SN - 978-3-96144-070-2 SP - 27 EP - 33 PB - DVS Media GmbH AN - OPUS4-51316 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Javaheri, E. A1 - Pittner, Andreas A1 - Graf, B. A1 - Rethmeier, Michael T1 - Instrumented indentation technique and its application for the determination of local material properties of welded steel structures N2 - The determination of mechanical properties of welded Steel structures such as strength or ductility is a subject of high interest for the majority of Companies in the area of metal Processing. The material Parameters can be obtained by performing the tensile test on the samples made from a part of a component. In some cases, it is highly expensive to produce the tensile specimens especially from the weld metal, which contains different type of microstructure such as weld seam or heat affected zone in an extremely small area. Therefore, a method is described in this paper to determine the material Parameters of high strength Steel structures and welded joints locally and without any additional effort to perform the tensile test. In this method, instrumented indentation technique (IIT), an indenter is pushed on the flat surface of a specimen in a certain period of time and simultaneously the applied force and the corresponding indentation path are measured. The data related to the force-indentation diagram is given as input to an artificial neural network (ANN) to obtain the material Parameters. The ANN can be trained by generating the large qualitative data sets with numerical Simulation of the IIT procedure. The Simulation must be run several times with the different material model parameter sets to generate the numerous force-indentation diagrams as the inputs of ANN. Then, the trained ANN is validated by performing the IIT on the welded joints and comparing the obtained material Parameters from ANN with the tensile test. Consequently, the mechanical properties of welded joints can be determined by performing the IIT and evaluating the resulting data by the ANN. T2 - 39. Assistentenseminar CY - Eupen, Germany DA - 12.09.2018 KW - Steel PY - 2019 SN - 978-396144-070-2 SP - 146 EP - 152 PB - DVS Media GmbH AN - OPUS4-51317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaumann, P. A1 - Schürmann, K. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Automatically Welded Tubular X-Joints for Jacket Substructures N2 - To increase the competitiveness of jacket substructures compared to monopiles a changeover from an individual towards a serial jacket production based on automated manufactured tubular joints combined with standardized pipes has to be achieved. Therefore, this paper addresses fatigue tests of automatically welded tubular X-joints focusing on the location of the technical fatigue crack. The detected location of the technical crack is compared to numerical investigations predicting the most fatigue prone notch considering the structural stress approach as well as the notch stress approach. Besides, the welding process of the automated manufactured tubular X-joints is presented. KW - Tubular X-joints KW - Fatigue tests KW - Technical crack detection KW - Local fatigue spproaches PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513228 DO - https://doi.org/10.1002/cepa.1140 VL - 3 IS - 3-4 SP - 823 EP - 828 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-51322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Reinsch, Stefan A1 - Fechtelkord, M. T1 - Structural investigation of hydrous phosphate glasses N2 - Dissolved water has major impact on the physical and chemical properties of phosphate glasses. In the present study we have investigated the structural response to water incorporation for glasses in the system Li2O–MgO–Al2O3–P2O5. Glasses containing 0–8 wt% H2O were synthesised at 500 MPa confining pressure in internally heated gas pressure vessels at 1323 K (LMP, Al-poor glass) and 1423 K (LMAP, Al-enriched glass). Water contents of glasses were determined by pyrolysis and subsequent Karl-Fischer titration (KFT) and/or by infrared spectroscopy. Density varies nonlinearly with water content implying large structural changes when adding up to 2 wt% H2O to the dry glass. Glass Transition temperatures measured by differential thermal analysis (DTA) continuously decrease with water content. The trend can be explained by depolymerisation of the phosphate network. Near-infrared spectroscopy shows that even in Al poor glasses only a minority of dissolved water is present as H2O molecules, but the largest amount is present as OH Groups formed by hydrolysis of P–O–P bonds. The network is stabilised by aluminium which is predominantly six-coordinated in these glasses as shown by 27Al MAS NMR spectroscopy. With increase of Al in the glasses, breaking up of the Phosphate network through hydrolysis is depressed, i.e. much lower OH Contents are formed at same total water content. Network depolymerisation upon addition of H2O is evident also from 31P MAS NMR spectroscopy. While Phosphate tetraheda are crosslinked by two to three bridging oxygen in dry glasses, diphosphate Groups are dominant in glasses containing 8 wt% H2O. T2 - 2. INT. CONF. ON PHOSPHATE GLASSES CY - Oxford, UK DA - 26.07.2017 KW - water speciation KW - phosphate glasses KW - infrared spectroscopy KW - NMR spectroscopy KW - high pressure PY - 2019 DO - https://doi.org/10.13036/17533562.60.2.041 SN - 1753-3562 VL - 60 IS - 2 SP - 49 EP - 61 PB - Society of Glass Technology CY - Sheffield AN - OPUS4-48122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - New insights in cocrystal formations: in situ investigations of mechanochemical syntheses N2 - Mechanochemistry is increasingly used for synthesizing soft matter materials including metal organic compounds and cocrystals. The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Time-resolved in situ investigations of milling reactions provide direct insights in the underlying mechanisms. We introduced a setup enabling in situ investigation of mechanochemical reactions using synchrotron XRD combined with Raman spectroscopy. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structure and thus obtaining reliable data for mechanistic studies. We discuss our recent results investigating the formation of (polymorphic) cocrystals. First investigations of a mechanochemical synthesis under controlled temperature which allow determining the activation barrier are presented.6 Furthermore, X-ray diffraction and in situ Raman spectroscopy coupled with thermography revealed a low temperature increase during milling reactions due to the mechanical impact and clear temperature increases as a result of the reaction heat. Our results indicate that in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemically synthesized compounds. T2 - CSEC Seminar University of Edinburgh CY - Edinburgh, Scotland DA - 16.05.2019 KW - Mechanochemistry KW - Acoustic levitation KW - In situ PY - 2019 AN - OPUS4-48098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for a yield function description of additively manufactured parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. From virtual experiments, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - Workshop on Additive Manufacturing, BAM CY - Berlin, Germany DA - 13.05.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-48064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lohrer, Christian A1 - von Oertzen, Alexander T1 - Bericht aus den Foren der benannten Stellen – Pyrotechnik und Explosivstoffe N2 - Es werden Trends und Herausforderungen im Rahmen der Konformitätsbewertung von Pyrotechnik und Explosivstoffen vorgestellt. Des Weiteren werden aktuelle Themen mit Bezug zur Amrktaufsicht und Prüfung/Bewertung der Produktegruppen vorgestellt T2 - 14. Infoveranstaltung Sprengstoffe und Pyrotechnik CY - Berlin und Horstwalde, Germany DA - 16.05.2019 KW - Round-Robin-Tests KW - Explosivstoofe KW - Pyrotechnik KW - Benannte Stellen PY - 2019 AN - OPUS4-48070 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. A1 - Kadoke, Daniel A1 - Fischer, Michael A1 - Kohlhoff, Harald ED - Pastramă, Ştefan Dan ED - Constantinescu, Dan Mihai T1 - A Small-Scale Test Bridge for Measurement and Model-based Structural Analysis N2 - The Measurement- and Model-based Structural Analysis (MeMoS) integrates a finite element model into least squares adjustment and thus allows to evaluate a mechanical model and measurements in a combined analysis. To examine the capability to detect and localise damage using this integrated analysis MeMoS, a small-scale truss bridge made of aluminium profiles is built as a test specimen for this purpose. T2 - 35th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Structural analysis KW - Damage detection and localisation KW - Finite element method KW - Photogrammetry KW - Adjustment calculation PY - 2019 UR - http://www.sciencedirect.com/science/article/pii/S2214785319304894 DO - https://doi.org/10.1016/j.matpr.2019.03.130 SN - 2214-7853 VL - 12 IS - 2 SP - 319 EP - 328 PB - Elsevier Ltd. AN - OPUS4-48053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilrich, Cordula T1 - Brennbar oder explosiv? Strategien zur Einstufung physikalischer Gefahren N2 - Das Seminar gibt einen detaillierten Einblick in die physikalischen Gefahrenklassen nach der CLP-Verordnung und stellt Strategien bei der Einstufung vor. Möglichkeiten zum Waiving und Screening werden erläutert und Berechnungsmethoden für Gemische werden in kurzen Aufgaben für die Seminarteilnehmer durchexerziert. T2 - Veranstaltung "Gemische im Fokus: Herausforderungen durch Einstufung und Giftinformation meistern" des Helpdesks REACH-CLP-Biozid bei der BAuA CY - Dortmund, Germany DA - 20.05.2019 KW - Chemikalienrecht KW - UN-GHS KW - Einstufung KW - Gefährliche Stoffe KW - CLP-Verordnung KW - Physikalische Gefahren PY - 2019 AN - OPUS4-48060 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank T1 - Special form radioactive material (SFRM)- kick off discussion for harmonisation of approval procedure and certificate N2 - Exchange of experiences in SFRM approval procedure, Possibilities for harmonisation. Support for preparation of proposal for the next IAEA SSR-6/ SSG-26 revision process concerning. Special Form Radioactive Material (SFRM)-working life. T2 - European Association of Competent Authorities for safe Transport of Radioactive Material, Meeting 15 CY - Athen, Greece DA - 15.05. 2019 KW - Ageing behaviour KW - Radioactive sources KW - Approval PY - 2019 AN - OPUS4-48061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thomas, Maximilian A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Weidemann, Jens A1 - Vollert, Florian A1 - Gibmeier, Jens T1 - Analyse des Heißrissverhaltens beim Schweißen neuartiger LTT-Zusatzwerkstoffe N2 - Solidification cracking of metals is a well-researched topic in the field of welding science. A material’s susceptibility to solidification cracking can be tested using numerous different specialized test procedures, one of which is the Modified Varestraint-/Transvarestraint test (MVT). It was developed at BAM in 1982 and is internationally standardised. Over the decades, this test has been extensively used to characterise the solidification cracking resistance of many different materials. The present study was conducted to further investigate the influences of the standardised MVT testing parameters, as well as the characteristics of evaluation methods on the results. Several different high alloyed martensitic LTT (low transformation temperature) filler materials, CrNi and CrMn type, were used. In previous pilot studies, these alloys have shown a rather distinctive solidification cracking behaviour (Fig. 1). During testing, energy input per unit length and bending speed were varied (especially the latter is usually kept at standard values), in addition to the most commonly altered factor - total deformation. First, the effects of different process parameter sets on the solidification cracking response were measured using the standard approach - microscopic analysis of the specimen surface. It was found that not all parameter changes had the expected outcome. For the Cr8Ni6 and Cr11Mn5 filler materials, influences of energy input per unit length and welding speed were in direct opposition. In order to investigate those apparent contradictions, µCT scans of MVT specimens were made. The results consistently show sub surface cracking, to significant, yet varying extents. Different primary solidification types were found using WDX-analysis, an aspect that is believed to be the main difference between the CrNi- and CrMn-type materials and their cracking characteristics. Results show that when it comes to testing of modern high-performance alloys, one set of standard MVT testing parameters might not be equally suitable for all materials. Also, to properly accommodate different solidification types, sub-surface cracking has to be taken into account. T2 - Votragsreihe MDDK an der OvGU Magdeburg CY - Magdeburg, Germany DA - 05.06.2019 KW - Schweißen KW - Heißrisse KW - LTT PY - 2019 AN - OPUS4-48177 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Kanerva, M A1 - Puolakka, A A1 - Takala, T.M. A1 - Mylläri, V A1 - Jönkkäri, I A1 - Sarlin, E A1 - Seitsonen, J A1 - Ruokolainen, J A1 - Saris, P A1 - Vuorinen, J T1 - Antibacterial polymer fibres by rosin compounding and melt-spinning N2 - The antibacterial features of natural pine/spruce rosin are well established, yet the functionality in various thermoplastics has not been surveyed. This work focuses on the processing of industrial grade purified rosin mixed with polyethylene (PE), polypropylene (PP), polylactic acid (PLA), polyamide (PA) and corn starch based biopolymer (CS). Homopolymer masterbatches were extrusion-compounded and melt-spun to form fibres for a wide range of products, such as filters, reinforcements, clothing and medical textiles. Due to the versatile chemical structure of rosin, it was observed compatible with all the selected polymers. In general, the rosin-blended systems were shear-thinning in a molten condition. The doped fibres spun of PE and PP indicated adequate melt-spinning capability and proper mechanical properties in terms of ultimate strength and Young's modulus. The antibacterial response was found dependent on the selected polymer. Especially PE with a 10 wt% rosin content showed significant antibacterial effects against Escherichia coli DH5α and Staphylococcus aureus ATCC 12598 when analysed in the Ringer's solution for 24 h. KW - Rosin KW - Antibacterial KW - Thermoplastics PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481785 DO - https://doi.org/10.1016/j.mtcomm.2019.05.003 SN - 2352-4928 VL - 20 SP - 527 EP - 527 PB - Elsevier AN - OPUS4-48178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina A1 - Rehfeldt, Rainer T1 - Compatibility of polymeric materials with heating oil/biodiesel blends at different temperatures N2 - Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether polymeric materials are resistant to heating oil with admixtures of 10 % biodiesel (B10) and 20 % biodiesel (B20). The polarity of biodiesel increases its solvency and facilitates permeation and extrac-tion. Solvation, swelling and/or extraction lead to changes in the physical properties and chemical changes of polymeric materials. The objective of this research was to determine the resistance of frequently used sealing materials such as FKM, EPDM, CR, CSM, NBR, IIR, VMQ, FVMQ, PA and PUR in up to four-year aged B10 for 84 days at 20 °C, 40 °C and 70 °C. The polymeric materials: ACM, FKM, HNBR, PA, PE; POM, PUR and PVC were ex-posed to B20 for 84 days at 40°C and 70°C in another research project. Mass, tensile strength, breaking elongation and Shore hardness A (D) of the test specimens were determined before and after the exposure for 84 (42) days in the heating oil blends B10 and B20. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was deter-mined for the evaluation of the compatibility. Measurements of the variations in mass, tensile properties and Shore hardness after exposure of the polymers in non-aged and aged heating oil B10 showed clearly that FKM, FVMQ and PA were the most resistant materials in B10. The elastomers CR, CSM, EPDM, IIR, NBR and VMQ were generally not resistant to B10. Damage to the materials increased with higher test temperatures and the age of B10. FKM, POM and PVC showed high compatibility in B20 at 40°C and 70 °C. ACM, HNBR and PA were evaluated as resistant in B20 at 40 °C but not at 70°C. T2 - Corrosion 2019 CY - Warsaw, Poland DA - 27.09.2019 KW - Polymers KW - Compatibility evaluations KW - Heating oil with 10% biodiesel KW - Heating oil with 20% biodiesel KW - Tensile properties KW - Shore hardness PY - 2019 AN - OPUS4-48146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk A1 - Woydt, Mathias T1 - i-Tribomat - Intelligent open test bed for materials tribological characterisation services N2 - Als Ausgangspunkt für i-TRIBOMAT schließen vier renommierte Institutionen in Europa, darunter die BAM, ihre Test- und Analytik-Methoden zusammen. Es entsteht ein Testfeld aus weit über 100 Tribometern mit den entsprechenden, analytischen Kapazitäten. Alle Ergebnisse fließen in eine harmonisierte Datenbank, die tribologische Erkenntnisse mit Materialeigenschaften ebenso zugänglich macht, wie Hinweise auf ökologische und gesundheitliche Verträglichkeiten. Diese Datenbank bildet zusätzlich das Rückgrat einer Vielzahl von Modellierungsmethoden, die die Entwicklungszeiten von der Idee bis zum marktreifen Produkt deutlich verkürzen sollen. Alle diese Möglichkeiten sollen über eine europaweit agierende, zentrale Kontaktstelle zur Verfügung gestellt werden. T2 - Arbeitskreis Zuverlässigkeit tribologischer Systeme CY - Berlin, Germany DA - 08.05.2019 KW - i-Tribomat KW - Tribologische Datenbank KW - Tribologsches Charakterisierungsdienste PY - 2019 AN - OPUS4-48147 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira T1 - Parchment N2 - This lecture will present history of parchment based on written sources and chemical examination of antique, medieval and modern parchment. Our studies of the Dead Sea Scrolls writing surfaces show that they can be divided roughly into three groups: leather, parchments of a light tint, and those of various shades of brown. The latter ones are invariably tanned, whereas the middle group is characterized by the presence of various inorganic salts. Some of the pale parchments, among them the Temple Scroll (11Q19), are remarkably similar to medieval European parchment. Therefore we have formulated the working theory that in the Judaea of the Hellenistic period two different parchment-making traditions existed side by side: an ‘eastern’ one (represented by the tanned parchments of Qumran, closely resembling Aramaic documents from the fifth century BC, and a ‘western’ one (represented by the untanned/lightly tanned ones similar to early Christian Greek parchments). This division has found support during our studies of the Geniza fragments, in which Babylonian and Palestinian traditions seem to follow the “eastern” and “western” technologies, respectively. T2 - Sumer School: Manusciences19 CY - Frejus, France DA - 10.03.2019 KW - Parchment KW - Leather KW - Tanning PY - 2019 AN - OPUS4-48138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Inks and pigments N2 - The writing materials used in various cultures and epochs can be divided into two groups. The first comprises materials that write themselves, producing script by rubbing their own material off onto the writing surface. It includes charcoal, graphite, chalk, raddle, and metal styluses. Depending on the material and consistency, these are cut or pressed to make styluses and then used for writing. The second group comprises all coloring liquids that are applied to the writing surface with a quill, pen, or printing block. It includes inks made from dye solutions (for example, tannin inks) and those made from pigment dispersions (for example, sepia, soot, and bister inks). The latter are sometimes also rubbed as pastes into letters incised into the writing surface, where they increase visual contrast. Due to the variety of recipes and the natural origin of raw materials, there is a wide range of different components and impurities in writing materials. Soluble inks (Tinten) Soluble inks are based mainly on dyes forming a water solution. Colored inks were manufactured with different plant or insect dyes (e.g. Brazil wood, kermes). To stabilize the volatile material, the dyes were mixed with a mordant (e.g., alum). Brown plant inks – best-known as blackthorn or Theophilus’ inks – are usually produced from the blackthorn bark and wine. In the early European Middle Ages, inks of this kind were widely used in the production of manuscripts in monasteries. Usually, they are light brown, so sometimes small amounts of iron sulfate were added, which led to what was called an “imperfect” iron gall ink. The difference between “classic” iron gall ink and such imperfect ink is therefore not clear: the distinction is not possible, especially with the naked eye. Dispersion inks (Tuschen) According to its generic recipe, one of the oldest black writing materials is produced by mixing soot with a binder dissolved in a small amount of water. Thus, along with soot, binders such as gum arabic (ancient Egypt) or animal glue (China) are among the main components of soot inks. From Pliny’s detailed account of the manufacture of various soot-based inks, we learn that, despite its seeming simplicity, producing pure soot of high quality was not an easy task in Antiquity. Therefore, we expect to find various detectable additives that might be indicative of the time and place of production. One such carbon ink requires the addition of copper sulfate . The experimental discovery of this ink in 1990 led to a misleading expression “metal ink” that is sometimes found in the literature. Colored dispersion inks based on pigments such as orpiment, cinnabar, or azurite have been known since Antiquity. Natural or artificially produced minerals are finely ground and dispersed in a binding medium. As in soot inks, water-soluble binders such as gum arabic or egg white were used. Iron gall ink (Eisengallustinten) Iron gall inks are a borderline case between these two groups. They are produced from four basic ingredients: galls, vitriol as the main source of iron, gum arabic as a binding media, and an aqueous medium such as wine, beer, or vinegar. By mixing gallic acid with iron sulfate, a water-soluble ferrous gallate complex is formed; this product belongs to the type “soluble inks”. Due to its solubility, the ink penetrates the writing support’s surface, making it difficult to erase. Exposure to oxygen leads to the formation of insoluble black ferric gallate pigment, i.e., “dispersion ink”. Natural vitriol consists of a varying mixture of metal sulfates. Since for ink making it was obtained from different mines and by various techniques, inks contain many other metals, like copper, aluminum, zinc, and manganese, in addition to the iron sulfate. These metals do not contribute to color formation in the ink solution, but possibly change the chemical properties of the inks. T2 - Summer School Manusciences 19 CY - Frejus, France DA - 10.03.2019 KW - Ink KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Oliver T1 - Paper: history, manufacture, properties N2 - The lecture traces the origins of paper, the manufacture and the spread from China to the Middle East and Europe. Though technological progress considerably affected each step of the manufacture of paper, the essence of the invention remains unchanged until today. The process of manufacturing handmade paper can be divided into a number of steps: - choosing the raw material (e.g. cellulose from wood, cotton, rags) - beating and grinding the fibres into small pieces - producing a liquid pulp of the desired texture - treating the pulp with various additives - filling the pulp suspension into a paper mould - draining the water - pressing and drying to get the actual sheet - various post-production treatments We will see how the manufacturing process is reflected in the properties of the paper and its degradation. A special attention will be paid to the instrumental analysis for identification of the paper types. Also watermark play an important role in the studies of the manuscripts. A short overview will be offered at the ends of the lecture. T2 - Summer School Manusciences 19 CY - Frejus, France DA - 10.03.2019 KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griepentrog, Michael T1 - Estimation of measurement uncertainty of instrumented indentation testing N2 - Some critical discussion of the state of the art of uncertainty evaluationin Instrumented Indentation Testing IIT Nowadays the Instrumented Indentation Testing (IIT), in the nano range often named as nano indention, is one of the most commonly used methods to determine the mechanical properties of materials in the micro and nano range. This method is already extensive standardized in ISO 14577 part 1-4. In the past, the application of this standard in testing praxis shows that the established values have an excellent precision.If an uncertainty is calculated, the range of values within which the true value is asserted to lie with some level of confidencewill be known. In part 1 of ISO 14577 [1] two methods for evaluation of the uncertainty in IIT are mentioned: Method 1 for determining uncertainty considers only those uncertainties associated with the overall measurement performance of the testing machine with respect to the reference blocks. Method 2calculates a combined uncertainty from individual contributions. These may be grouped into random and systematic uncertainties. Both methods will be described in detail using examples from the dailyexperimental praxis. The comparabilityof both methods will be critically discussed. Finally, it will be showedhow the calculated uncertaintiescan be used for performancetests and product specifications. Acknowledgement This work was performed under the support of the EMPIR project 17NRM05Advancing measurement uncertainty̶ comprehensiveexamples for key international standards References [1] ISO 14577 part 1 (2017) T2 - KLA Nanomechanical Testers User Workshop CY - Langen, Germany DA - 02.05.2019 KW - Instrumented Indentation Testing KW - IIT KW - nanoindentation KW - mechanical properties KW - uncertainty KW - performance test KW - product specification PY - 2019 AN - OPUS4-48141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhning, Martin A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Characterization of high-performance membrane polymers for gas separation using broadband dielectric spectroscopy N2 - In recent years superglassy polymers exhibiting intrinsic microporosity established a new perspective for a number of applications, especially for gas separation membranes as These polymers Combine extremely high permeabilities with attractive selectivities. The essential factor governing the structure Formation in the solid film or layer is either a contorted rigid Backbone (polymers of intrinsic microporosity - PIMs) or extremely bulky side groups (polynorbornenes and polytricyclonenenes). For a deeper understanding of both types of such high-Performance polymers for gas separation membranes and their further development broadband dielectric spectroscopy (BDS) can provide a substantial contribution. BDS addresses molecular relaxations characterizing the dynamics of the solid polymer as a major factor determining the gas transport properties but also the physical aging behavior which is an essential issue for such polymers. BDS is applied on PIMs where fluctuations of molecular dipoles connected to the backbone can be directly monitored. Furthermore, also polynorbornenes were investigated which carry no dipole moment in their repeat unit - the high resolution of modern equipment allows for the detailed analysis also for very small dielectric losses originating from partially oxidized moieties or marginal catalyst residues. Additionally, from interfacial polarization phenomena, such as Maxwell-Wagner-Sillars (MWS) polarization due to blocking of charge carriers at internal interfacial boundaries on a mesoscopic length scale, valuable information on the intrinsic microporosity and its changes induced by physical aging can be obtained. Finally, also conductivity can be characterized in detail in such polymeric systems revealing contributions of interactions of aromatic moieties (π-π-stacking) or the drift motion of charge carriers. These features also determine the structure formation in the solid state. T2 - 257th ACS National Meeting - Symposium "Transport in Polymer Membranes" CY - Orlando, FL, USA DA - 31.03.2019 KW - polymers KW - gas separation membranes KW - polynorbornenes KW - polymers of intrinsic microporosity KW - dielectric spectroscopy KW - molecular mobility PY - 2019 AN - OPUS4-48142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Thoralf T1 - Bericht aus den DIN-Ausschüssen "Korrosionsprüfverfahren“ + „Korrosion und Korrosionsschutz“ N2 - Der Vortrag gibt einen Überblick über die Tätigkeiten der DIN-Ausschüsse "Korrosionsprüfverfahren" sowie "Korrosion und Korrosionsschutz". Es werden neuste Informationen zum Stand verschiedener Normen aus den beiden Ausschüssen gegeben. T2 - Gemeinschaftssitzung der GfKorr-Arbeitskreise "Korrosion und Korrosionsschutz von Aluminium und Magnesium" und "Korrosionsuntersuchung und -überwachung" CY - Magdeburg, Germany DA - 11.04.2019 KW - Normen KW - Korrosionsschutz KW - Korrosion KW - Korrosionsprüfung PY - 2019 AN - OPUS4-47980 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons in electrical contact with the metal. Methanogenic archaea can also cause MIC by directly withdrawing electrons from the iron surface for methanogenesis. However, the mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite, a by-product of methanogenesis, (4Fe + 5HCO3 + 5H+  4FeCO3 + CH4 + 3H2O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO3 precipitation may be significantly influenced by environmental conditions such as pH and advective processes. T2 - Dechema CY - Frankfurt a. M., Germany DA - 13.05.2019 KW - MIC KW - Corrosion KW - Methanogens KW - Corrosion product PY - 2019 AN - OPUS4-47982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Börner, Andreas A1 - Schröpfer, Dirk A1 - Zimne, Lutz A1 - Waurischk, Tina T1 - Ultraschallunterstützte Fräsbearbeitung aus Sicht des Maschinenbedieners N2 - Im Beitrag sind die Vor- und Nachteile beim Einsatz von Ultraschallunterstützung für das Zerspanen von harten und spröden Werkstoffen zusammengefasst. Des Weiteren werden aktuelle und zukünftige Analysen zum Thema ultraschallunterstütztes Zerspanen mit geometrisch bestimmter Schneide schwer zerspanbarer Materialien vorgestellt. T2 - 14. Jahrestagung des HGF-Arbeitskreises „Bau wissenschaftlicher Geräte“ CY - Karlsruhe, Germany DA - 08.05.2019 KW - Ultraschallunterstütztes Zerspanen KW - Fräsen KW - Schleifen KW - Zerspanbarkeitsanalysen KW - abtragende Glasbearbeitung PY - 2019 AN - OPUS4-47984 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias T1 - Eddy Current Testing for Laser Beam Melting N2 - This poster presents a new application for high-spatial resolution eddy current testing (ET) with magnetoresistive (MR) sensor arrays for additive manufacturing (AM) T2 - Workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - GMR KW - Additive Manufacturing KW - 316L KW - LBM KW - SLM KW - Eddy Current PY - 2019 AN - OPUS4-47992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - What isotopes can do... N2 - The talk gives Brief overview on the effects causing isotope variations in nature and some typical applications. It also Points to a potential application in corrosin sciences. T2 - Final Colloquium: Microbiologically influenced corrosion CY - Berlin, Germany DA - 21.05.2019 KW - Iron isotope fractionation KW - Microbially induced corrosion PY - 2019 AN - OPUS4-48273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roloff, Alexander A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Borcherding, H. A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Quantification of Aldehydes on Polymeric Microbead Surfaces via Catch and Release of Reporter Chromophores N2 - Aldehyde moieties on 2D-supports or microand nanoparticles can function as anchor groups for the attachment of biomolecules or as reversible binding sites for proteins on cell surfaces. The use of aldehyde-based materials in bioanalytical and medical settings calls for reliable methods to detect and quantify this functionality. We report here on a versatile concept to quantify the accessible aldehyde moieties on particle surfaces through the specific binding and subsequent release of small reporter molecules such as fluorescent dyes and nonfluorescent chromophores utilizing acylhydrazone formation as a reversible covalent labeling strategy. This is representatively demonstrated for a set of polymer microparticles with different aldehyde labeling densities. Excess reporter molecules can be easily removed by washing, eliminating inaccuracies caused by unspecific adsorption to hydrophobic surfaces. Cleavage of hydrazones at acidic pH assisted by a carbonyl trap releases the fluorescent reporters rapidly and quasi-quantitatively and allows for their fluorometric detection at low concentration. Importantly, this strategy separates the signal-generating molecules from the bead surface. This circumvents common issues associated with light scattering and signal distortions that are caused by binding-induced changes in reporter fluorescence as well as quenching dye− dye interactions on crowded particle surfaces. In addition, we demonstrate that the release of a nonfluorescent chromophore via disulfide cleavage and subsequent quantification by absorption spectroscopy gives comparable results, verifying that both assays are capable of rapid and sensitive quantification of aldehydes on microbead surfaces. These strategies enable a quantitative comparison of bead batches with different functionalization densities, and a qualitative prediction of their coupling efficiencies in bioconjugations, as demonstrated in reductive amination reactions with Streptavidin. KW - Fluorescent label KW - Surface group quantification KW - Polymer particle KW - Cleavable linker KW - Catch and release assay PY - 2019 DO - https://doi.org/10.1021/acs.analchem.8b05515 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 14 SP - 8827 EP - 8834 PB - ACS Publications AN - OPUS4-48284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weltschev, Margit T1 - Compatibility of sealing materials with biofuels and biodiesel heating oil blends at different temperatures N2 - Biofuels including ethanol and biodiesel (fatty acid methyl ester, FAME) represent an important renewable fuel alternative to petroleum-derived transport fuels. Increasing biofuels use would bring some benefits, such as a reduction in oil demands and greenhouse gas emissions, and an improvement in air quality. Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. The objective of this research was to determine the resistance of frequently used sealing materials such as CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), EPDM (ethylene-propylene-diene rubber), FKM (fluorocarbon rubber), FVMQ (methyl-fluorosilicone rubber), IIR (butyl rubber), NBR (acrylonitrile-butadiene rubber), PA (polyamides), PUR (polyester urethane rubber) and VMQ (methyl-vinyl-silicone rubber), in heating oil with admixtures of biogenic sources such as E10 (fuel with max. 10 % ethanol), E85 (fuel with 85 % ethanol), non-aged and aged biodiesel, diesel fuel with 5 % biodiesel, non-aged and aged B10 (heating oil with 10 % biodiesel) at 20 °C, 40 °C and 70 °C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the fuels. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D (for PA) were determined before and after exposure of the test specimens in the biofuels for 42 days. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was set for the evaluation of the compatibility. The sealing materials CR, CSM, EPDM, IIR and NBR were generally not resistant to biodiesel and B10. In summary, it can be therefore stated that the chemical resistance of the fluoropolymers FKM and FVMQ in fuels and biofuels is the best one. KW - Compatibility evaluation KW - Polymers KW - FAME KW - Heating oil with 10 % FAME PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479722 DO - https://doi.org/10.15344/2456-351X/2019/165 SN - 2456-351X VL - 4 IS - 165 SP - 4 EP - 9 PB - Graphyonline Publications Pvt. Ltd. CY - Bangalore, Karnataka, Indien AN - OPUS4-47972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Schäferling, M. T1 - Surface modifications for photon-upconversion-based energy-transfer nanoprobes N2 - An emerging class of inorganic optical reporters are nearinfrared (NIR) excitable lanthanide-based upconversion nanoparticles (UCNPs) with multicolor emission and long luminescence lifetimes in the range of several hundred microseconds. For the design of chemical sensors and optical probes that reveal analyte-specific changes in their spectroscopic properties, these nanomaterials must be combined with sensitive indicator dyes that change their absorption and/or fluorescence properties selectively upon interaction with their target analyte, utilizing either resonance energy transfer (RET) processes or reabsorption-related inner filter effects. The rational development of UCNP-based nanoprobes for chemical sensing and imaging in a biological environment requires reliable methods for the Surface functionalization of UCNPs, the analysis and quantification of Surface groups, a high colloidal stability of UCNPs in aqueous media as well as the chemically stable attachment of the indicator molecules, and suitable instrumentation for the spectroscopic characterization of the energy-transfer systems and the derived nanosensors. These topics are highlighted in the following feature article, and examples of functionalized core−shell nanoprobes for the sensing of different biologically relevant analytes in aqueous environments will be presented. Special emphasis is placed on the intracellular sensing of pH. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - FRET KW - Surface chemistry PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.9b00238 SN - 0743-7463 VL - 35 IS - 15 SP - 5093 EP - 5113 PB - ACS AN - OPUS4-47975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Nano Powder - a Challenge for Granulometry N2 - If the particle size decreases, the ratio of surface area to volume increases considerably. This provides benefits for all surface-driven processes that run faster or at lower temperatures than larger particles. However, handling and characterization of the nanopowders are much more difficult. Particularly polydisperse powders with irregular shape, as grinding products, represent a challenge. Granulometry in the submicron and nanoscale often leads to incorrect results without knowledge of particle morphology. This presentation demonstrates potentials of using the volume-specific surface area (SV or VSSA) in the granulometric characterization of nanopowders, for instance, correlations between the volume-specific surface area and the median particle size are discussed considering the particle morphology and the model of the logarithmic normal distribution. Moreover, the presentation deals with the optimal dispersion of nanopowders during sample preparation. Indirect ultrasound device with defined cooling was developed to prevent both contamination by sonotrode abrasion and sample changes by heat. Successful granulometric characterization of nanopowders demands both improved dispersion technology and very often an effective combination of two or more measurement methods. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft CY - Leoben, Austria DA - 06.05.2019 KW - Nano screening KW - VSSA KW - Nano particle KW - Particle size PY - 2019 AN - OPUS4-47976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Einfluss schweißbedingter Spannungen auf die Relaxationsrissbildung bei der Wärmebehandlung warmfester 13CrMoV-Stähle N2 - Wirtschaftliche und ökologische Aspekte führten in den letzten Jahren zu deutlich gesteigerten Anforderungen an die Effizienz und die Flexibilität petrochemischer Anlagen. Die heutzutage geforderten Prozesstemperaturen und -drücke lassen sich nur durch den Einsatz neuer warmfester Stahlgüten erreichen. Der mit Vanadium modifizierte Stahl 13CrMoV9-10 weist eine bessere Kriech- und Druckwasserstoffbeständigkeit auf und wird seit Mitte der 90er Jahre im petrochemischen Reaktorbau eingesetzt. Aufgrund der niedrigen Zähigkeit und hohen Festigkeit des Schweißgutes im geschweißten, nicht spannungsarm geglühten Zustand sowie einer erhöhten Sensitivität gegenüber Spannungsrelaxationsrissen bedarf dieser Stahl allerdings einer äußerst sorgfältigen schweißtechnischen Verarbeitung. Bisherige Untersuchungen zur Rissentstehung in warmfesten Stählen konzentrierten sich vorrangig auf thermische und metallurgische Einflussfaktoren, bieten jedoch nur wenige Erkenntnisse zum Einfluss des Schweißprozesses auf die Rissbildung beim Spannungsarmglühen unter Berücksichtigung realitätsnaher Fertigungsbedingungen. Im ersten Teil wurde zunächst der Einfluss der Wärmeführung auf die mechanischen Eigenschaften anhand von frei schrumpfenden Laborproben untersucht. Während sich die Wärmeführung wesentlich auf die Schweißnahtstruktur auswirkte, war ein signifikanter Effekt auf die mechanischen Eigenschaften nicht nachweisbar. Auch traten infolge der Wärmenachbehandlung der frei schrumpfend geschweißten Proben keine Spannungsrelaxationsrisse auf. Der zweite Teil umfasste die realitätsnahe Abbildung der Fertigungsbedingungen im petrochemischen Reaktorbau. Zu diesem Zweck wurden die konstruktiven Randbedingungen während des Vorwärmens, Schweißens, des Wasserstoffarmglühens und der abschließenden Wärmenachbehandlung realitätsnah in einer speziellen 3-D-Prüfanlage zur Simulation von Bauteilschweißungen abgebildet. Unter konstruktiver Schrumpfbehinderung gelang der Nachweis der unterschiedlichen Wirkung von Vorwärm- / Zwischenlagentemperatur und Streckenenergie auf die resultierenden Kräfte, Momente und Spannungen. Die Gesamtreaktionsspannung nach dem Schweißen wurde innerhalb des untersuchten Parameterfeldes maßgeblich durch die Streckenenergie beeinflusst. Ein möglichst geringer Gesamtwärmeeintrag hat die niedrigste Bauteilbeanspruchung zur Folge. Während der Wärmenachbehandlung kam es in allen Versuchen zu Spannungsrelaxationsrissen. Deren kumulierte Länge korrelierte mit den ermittelten schweißbedingten Reaktionsspannungen. Die Detektion der Risse während der Wärmenachbehandlung im Bauteilversuch erfolgte erstmalig in-situ mittels Schallemissionsanalyse. Die Rissinitiierung fand nachweislich im Temperaturbereich von 300 °C bis 500 °C statt. Die Reaktionsspannungen nach der Wärmenachbehandlung lagen unabhängig von der Ausgangsbelastung auf einem vergleichbaren Niveau. Die Zähigkeit der Schweißverbindung nahm klar gegenüber den frei schrumpfend geschweißten Proben ab. Mittels REM- und TEM-Analysen an vergleichbaren belasteten und unbelasteten Proben wurde eine beschleunigte Alterung, durch das frühzeitige Ausscheiden von Sonderkarbiden während der Wärmenachbehandlung unter definierter Einspannung (d. h. unter Belastung), nachgewiesen. Die verstärkte Korngrenzensegregation korrelierte mit der signifikanten Abnahme der Kerbschlagarbeit der unter Einspannung geschweißten Proben. T2 - Fachausschuss 13 "Eigenspannungen" der AWT CY - Ilmenau, Germany DA - 07.05.2019 KW - Schweißen KW - Warmfester Stahl KW - Spannungsrelaxationsrisse PY - 2019 AN - OPUS4-47977 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Bestimmung der Partikelgrößenverteilung mittels Zentrifugen-Sedimentationsverfahren nach ISO 13318-2 (Küvette) N2 - Im Vortrag werden das Messprinzip des Zentrifugen-Sedimentationsverfahrens erläutert und die Anforderungen der zugrundeliegenden Normen diskutiert. Es schließen sich umfangreiche Ausführungen zur praktischen Durchführung der Messung, insbesondere auch zu den vorbereitenden Arbeiten, sowie zur Auswertung der Rohdaten an. Nach einem Vergleich der Ergebnisse mit anderen Messverfahren, wird das Verfahren in einer Zusammenfassung bewertet. T2 - Rheologie und Stabilität von dispersen Systemen CY - Potsdam, Germany DA - 03.06.2019 KW - Nanomaterial KW - Partikelgrößenverteilung KW - Analytische Zentrifuge PY - 2019 AN - OPUS4-48286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Celina, M. A1 - Braun, Ulrike T1 - Automated thermal extraction-desorption gas chromatography mass spectrometry: A multifunctional tool for comprehensive characterization of polymers and their degradation products N2 - The TED-GC-MS analysis is a two-step method. A sample is first decomposed in a thermogravimetric analyzer (TGA) and the gaseous decomposition products are then trapped on a solid-phase adsorber. Subsequently, the solid-phase adsorber is analyzed with thermal desorption gas chromatography mass spectrometry (TDU-GC-MS). This method is ideally suited for the analysis of polymers and their degradation processes. Here, a new entirely automated System is introduced which enables high sample throughput and reproducible automated fractioned collection of decomposition products. Strengths and limitations of the system configuration are elaborated via three examples focused on practical challenges in materials analysis and identification: i) separate analysis of the components of a wood-plastic-composite material, ii) quantitative determination of weight concentration of the constituents of a polymer blend and iii) quantitative analysis of model samples of microplastics in suspended particulate matter. KW - Thermal extraction-desorption gas chromatography mass spectrometry KW - Analysis KW - Polymers KW - Microplastics KW - Automation PY - 2019 DO - https://doi.org/10.1016/j.chroma.2019.01.033 VL - 1592 SP - 133 EP - 142 PB - Elsevier CY - Amsterdam AN - OPUS4-48287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Rabe, Torsten T1 - Superior granule properties by spray drying controlled destabilized slurries with ultrasound N2 - Homogeneous introduction of organic additives is a key of ceramic powder processing. Addition of organics to ceramic slurries holds advantages compared to dry processing like organic content reduction and a more homogeneous additive distribution on the particle surface. Investigations of the alumina slurries were primarily based on zeta potential measurements and sedimentation analysis by optical centrifugation. Both methods were combined to determine a suitable additive type, amount and composition, whereas the spray drying suitability has been ensured by viscosity measurements. Granules, yielded by spray drying of such ideally dispersed alumina slurries, are mostly hollow and possess a hard shell. Those granules cannot easily be processed and can only hardly be destroyed in the following shaping step, leading to sinter bodies with many defects and poor strength and density. The precise slurry destabilization, carried out after ideally dispersing the ceramic powder, shows a strong influence on the drying behavior of the granules and hence on the granule properties. A promising degree of destabilization and partial flocculation was quantified by optical centrifugation and resulted in improved granule properties. Spray drying the destabilized alumina slurries yielded homogeneous “non-hollow” granules without the above mentioned hard shell. Sample bodies produced of these granules exhibited a reduction of defect size and number, leading to better results for sinter body density and strength. The positive effect of the slurry destabilization has been further improved, by exchanging the atomizing unit from a two-fluid one to an ultrasound atomizer with only minor slurry adjustments necessary. The controlled destabilization and ultrasound atomization of the ceramic slurry show excellent transferability for zirconia and even ZTA (zirconia toughened alumina) composite materials. T2 - Partec 2019 CY - Nuremberg, Germany DA - 09.04.2019 KW - Destabilization KW - Slurry KW - Ultrasound KW - Atomization PY - 2019 AN - OPUS4-48291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunner-Schwer, C. A1 - Petrat, T. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Highspeed-plasma-laser-cladding of thin wear resistance coatings: A process approach as a hybrid metal deposition-technology N2 - Plasma-Transferred-Arc (PTA) welding is a process that enables high deposition rates, but also causes increased thermal load on the component. Laser metal deposition (LMD) welding, on the other hand, reaches a high level of precision and thus achieves comparatively low deposition rates, which can lead to high processing costs. Combining laser and arc energy aims to exploit the respective advantages of both technologies. In this study, a novel approach of this process combination is presented using a PTA system and a 2 kW disk laser. The energy sources are combined in a common process zone as a high-speed plasma laser cladding technology (HPLC), which achieves process speeds of 10 m/min at deposition rates of 6.6 kg/h and an energy per unit length of 39 J/mm. KW - Highspeed-plasma-laser-cladding KW - Wear resistance KW - Deposition welding KW - Tungsten carbide KW - NiCrBSi PY - 2019 DO - https://doi.org/10.1016/j.vacuum.2019.05.003 SN - 0042-207X VL - 166 SP - 123 EP - 126 PB - Elsevier AN - OPUS4-48294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Trubiroha, P. T1 - Exposure response function for a quantitative prediction of weathering caused aging of polyethylene N2 - The exposure response function of the carbonyl formation over the bulk has been determined for a high-density polyethylene of a thickness of 200 μm, which was used as a weathering reference material according to ISO TR 19032. To this end, spectral sensitivity was studied by local measurement of the effect of spectrally dispersed irradiation. Both the exposure device and the methodology of determination are described. The temperature dependency of photooxidation was determined by UV exposure at various temperatures between 23 and 80 °C. Deviations from linearity and thus reciprocity below 40 °C are discussed and assumed to be related to diffusion limitations. An Arrhenius approach –based on data of linear carbonyl formation – has been incorporated into the exposure response function. Using this exposure response function, aging in terms of the distribution of a quantitative property change over a plastic component can be predicted for a specific outdoor location with real chronologic weather data as input for the exposure. Thus, artificial and natural weathering can be linked and compared. The established exposure response function has been validated by outdoor exposure results from the literature. If an estimated diffusion limitation is taken into consideration, calculations and published data are in good agreement. KW - Irradiation KW - Weathering KW - Spectral sensitivity KW - Temperature dependency KW - Spectral irradiation PY - 2019 DO - https://doi.org/10.3139/120.111348 SN - 0025-5300 VL - 61 IS - 6 SP - 517 EP - 526 PB - Carl Hanser Verlag GmbH & Co. KG AN - OPUS4-48295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Javaheri, E. A1 - Pittner, Andreas A1 - Graf, B. A1 - Rethmeier, Michael T1 - Mechanical properties characterization of reisstance spot welded DP1000 steel under uniaxial tensile tests N2 - Resistance spot welding (RSW) is widely used in the automotive industry as the main joining method. Generally, an automotive body contains around 2000 to 5000 spot welds. Therefore, it is of decisive importance to characterize the mechanical properties of these areas for the further optimization and improvement of an automotive body structure. The present paper aims to introduce a novel method to investigate the mechanical properties and microstructure of the resistance spot weldment of DP1000 sheet steel. In this method, the microstructure of RSW of two sheets was reproduced on one sheet and on a bigger area by changing of the welding parameters, e. g. welding current, welding time, electrode force and type. Then, tensile tests in combination with digital Image correlation (DIC) measurement were performed on the notched tensile specimens to determine the mechanical properties of the weld metal. The notch must be made on the welded tensile specimen to force the fracture and elongation on the weld metal, enabling the characterization of its properties. Additionally, the parameters of a nonlinear isotropic material model can be obtained and verified by the simulation of the tensile specimens. The parameters obtained show that the strength of DP1000 steel and the velocity of dislocations for reaching the Maximum value of strain hardening, are significantly increased after RSW. The effect of sample geometry and microstructural inhomogeneity of the welded joint on the constitutive property of the weld metal are presented and discussed. KW - Mechanical properties KW - resistance spot welding KW - dual phase steel KW - digital image correlation PY - 2019 VL - 61 IS - 6 SP - 527 EP - 532 PB - Carl Hanser Verlag CY - München AN - OPUS4-48296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative microstructural analysis - VAMAS/TWA 37 N2 - The 44th Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee has just taken place at NIST in Boulder (CO, USA). BAM participates with significant contributions in Technical Working Areas on nanoparticle and surface chemistry characterization, but also has positioned itself to new global material challenges and trends in the developement of advanced materials and their characterization, such as thermal properties, self-healing materials, and micro- and nanoplastic. T2 - Annual Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee CY - Boulder, CO, USA DA - 22.05.2019 KW - VAMAS KW - Nanoparticles KW - Microbeam analysis KW - Advanced materials PY - 2019 AN - OPUS4-48184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481872 DO - https://doi.org/10.3762/bjoc.15.110 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Impedance spectroscopy: Theory, experiment and applications (Book review) N2 - This textbook fulfills its dedication of being the “essential reference for the field, featuring protocols, analysis,fundamentals and the latest advances” of impedance spectroscopy to its readers. It really provides an insight in all facets of this powerful technique. It should not be missed in the bookshelf of electrochemists and all other interested researchers and engineers who want to be on the current state of this technique. KW - Impedance spectroscopy KW - Surface PY - 2019 DO - https://doi.org/10.1002/maco.201970064 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 6 SP - 1133 PB - WILEY ‐ VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Agea-Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina T1 - Sintering and foaming of silicate glass powders N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites, glass bonded ceramics or pastes. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - IMAPS/ACerS 15th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT 2019) CY - Shanghai, China DA - 16.04.2019 KW - Glass powder KW - Sintering KW - Foaming PY - 2019 AN - OPUS4-48196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Tielemann, Christopher A1 - Busch, R. A1 - Patzig, C. A1 - Müller, Ralf A1 - Höche, T. T1 - Oriented surface crystallization in 18BaO·22CaO·60SiO2 and MgO·CaO·2SiO2 glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. The vast majority of previous work does not consider possible effects of surface preparation and surrounding atmosphere. Moreover, very few observations of surface crystal orientation were made on separately grown crystals. The aim of our project is to advance the basic understanding of oriented surface crystallization, e.g. whether preferred orientation of surface crystals results from oriented nucleation or reorientation mechanisms during early crystal growth. In both cases, crystal orientation may reflect the orientation of the glass surface or that of anisotropic active surface nucleation sites. Therefore, we focus on orientation of surface crystals separately growing under controlled conditions. First results on diopside (MgCaSi2O6) and walstromite (BaCa2Si3O9) crystals growing from 18BaO·22CaO·60SiO2 and MgO·CaO·2SiO2 glass surfaces, respectively, indicate that different orientation mechanisms may occur. Neighbored walstromite crystals were found to gradually reorient themselves when they are going to impinge each other during stepwise isothermal treatments (log η = 4,5 Pa*s) of polished glass samples. Nevertheless, no preferred crystal orientation was evident for separate crystals. For diopside crystals growing from polished glass surfaces (1 μm diamond lapping foil), strong preferred orientation was observed for 3.5 to 85 min annealing at 850 °C. Electron Backscatter Diffraction (EBSD) studies showed that the c-axis of surface crystals is oriented parallel to the glass surface and that separated diopside crystals as small as 600 nm are already oriented. Studies on glass surfaces, polished with diamond lapping foils starting from 16 μm down to 1 μm grain, revealed that crystal orientation may scatter arround this preferential orientation and that this scatter progressively decreases with decreasing polishing grain size. T2 - 93rd Annual Meeting of the German Society of Glass Technology (DGG) in conjunction with the French Union for Science and Glass Technology (USTV) Annual Meeting CY - Nuremberg, Germany DA - 13.05.2019 KW - Surface crystallization KW - Orientation KW - Glass KW - Diopside PY - 2019 AN - OPUS4-48198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahl, S. A1 - El-Refaei, S. M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Amsalem, P. A1 - Lee, K.-S. A1 - Koch, N. A1 - Doublet, M.-L. A1 - Pinna, N. T1 - Zn0.35Co0.65O – A Stable and highly active oxygen evolution catalyst formed by zinc leaching and tetrahedral coordinated cobalt in wurtzite structure N2 - To arrive to sustainable hydrogen-based energy solutions, the understanding of water-splitting catalysts plays the most crucial role. Herein, state-of-the-art hypotheses are combined on electrocatalytic active metal sites toward the oxygen evolution reaction (OER) to develop a highly efficient catalyst based on Earth-abundant cobalt and zinc oxides. The precursor catalyst Zn0.35Co0.65O is synthesized via a fast microwaveassisted approach at low temperatures. Subsequently, it transforms in situ from the wurtzite structure to the layered γ-Co(O)OH, while most of its zinc leaches out. This material shows outstanding catalytic Performance and stability toward the OER in 1 m KOH (overpotential at 10 mA cm−2 ηinitial = 306 mV, η98 h = 318 mV). By comparing the electrochemical results and ex situ analyses to today’s literature, clear structureactivity correlations are able to be identified. The findings suggest that coordinately unsaturated cobalt octahedra on the surface are indeed the active centers for the OER. KW - Oxygen Evolution Catalyst KW - XAFS KW - Oxygen evolution reaction (OER) KW - Cobalt and zinc oxides PY - 2019 DO - https://doi.org/10.1002/aenm.201900328 SN - 1614-6832 SN - 1614-6840 VL - 9 IS - 20 SP - 1900328,1 EP - 10 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias T1 - Electromagnetic testing for additive manufacturing N2 - This talk presents a new application for high-spatial resolution eddy current testing (ET) with magneto resistive (MR) sensor arrays. With rising popularity and availability of additive manufacturing (AM), companies mainly in the aerospace sector, set high requirements on quality control of AM parts, especially produced with selective laser melting (SLM). Since it was shown that those parts are prawn to flaws like pores or cracks, every part needs to be tested. Therefore, NDT Methods, like ET, could help to characterize SLM parts. Research on ET has shown, that offline ET with high spatial resolution MR sensor arrays is possible and that flaws as small as 50 µm could be detected while significantly reducing testing time. In this talk a first approach on automated online ET method for testing SLM parts is proposed. An approach with hundreds of MR sensor is made to maintain spatial resolution and short testing times. Classic signal conditioning methods are used to reduce cost and complexity while maintaining high testing bandwidths. The proposed idea enables further research on automated generation of testing reports, process control or automated flaw curing. T2 - ICWAM 2019 CY - Metz, France DA - 05.06.2019 KW - GMR KW - Eddy Current KW - LBM KW - SLM KW - LPBF KW - Additive Manufacturing PY - 2019 AN - OPUS4-48201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Characterization of co (polyamide)s N2 - Characterization problems of technically relevant copolyamides applying size exclusion chromatography, interaction chromatography and their combination with MALDI-TOF-MS will be discussed. T2 - 23. Kolloquium Massenspektrometrie und synthetische Polymere CY - Berlin, Germany DA - 14.05.2019 KW - LCCC KW - Mass spectrometry of polymers KW - SEC KW - LC / MALDI-TOF-MS coupling PY - 2019 AN - OPUS4-48221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, Manfred P. A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Bruno, Giovanni ED - Erdmann, Maren T1 - Diesel-induced transparency of plastically deformed high-density polyethylene N2 - High-density polyethylene becomes optically transparent during tensile drawing when previously saturated with diesel fuel. This unusual phenomenon is investigated as it might allow conclusions with respect to the material behavior. Microscopy, differential scanning calorimetry, density measurements are applied together with two scanning X-ray scattering techniques: wide angle X-ray scattering (WAXS) and X-ray refraction, able to extract the spatially resolved crystal orientation and internal surface, respectively. The sorbed diesel softens the material and significantly alters the yielding characteristics. Although the crystallinity among stretched regions is similar, a virgin reference sample exhibits strain whitening during stretching, while the diesel-saturated sample becomes transparent. The WAXS results reveal a pronounced fiber texture in the tensile direction in the stretched region and an isotropic orientation in the unstretched region. This texture implies the formation of fibrils in the stretched region, while spherulites remain intact in the unstretched parts of the specimens. X-ray refraction reveals a preferred orientation of internal surfaces along the tensile direction in the stretched region of virgin samples, while the sample stretched in the diesel-saturated state shows no internal surfaces at all. Besides from stretching saturated samples, optical transparency is also obtained from sorbing samples in diesel after stretching. KW - PE-HD Sorption KW - Cavitation KW - Diesel Fuel KW - X-ray refraction KW - WAXS KW - Internal Surfaces KW - Crystal Texture PY - 2019 DO - https://doi.org/10.1007/s10853-019-03700-8 SN - 1573-4803 SN - 0022-2461 VL - 54 IS - 17 SP - 11739 EP - 11755 PB - Springer US CY - US AN - OPUS4-48226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lohrer, Christian T1 - Report from the Forum of Notified Bodies for Pyrotechnic Articles N2 - Aktuelle Themen aus dem Forum der benannten Stellen für Pyrotechnik bei der EU-KOM werden vorgestellt, unter anderem zu den Themen Kennzeichnung, Round Robin Test, Konformitätserklärungen, Sicherheitsabstände N2 - Current topics and challenges in the forum of notified bodies for pyrotechnics at the EU-COM will be presented: labelling, round robin tests, declarations of conformity, safety distances. T2 - Meeting of the group of experts on pyrotechnic articles CY - Brussels, Belgium DA - 17.06.2019 KW - Konformitätserklärung KW - Pyrotechnik KW - Kennzeichnung KW - RRT KW - Round robin tests KW - Labelling KW - Declarations of conformity KW - Pyrotechnics PY - 2019 AN - OPUS4-48227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - High performance polymer materials for tribological applications in hydrogen and methane N2 - The development of hydrogen technologies is a key strategy to reduce greenhouse gas emission worldwide. Power-to-Gas is a challenging solution, in which hydrogen and methane can be used in mobility, industry, heat supply and electricity generation applications. This presentation deals with the tribological behaviour of polymer materials in hydrogen and methane, both in gas and in liquefied form. T2 - ECOTRIB 2019 CY - Vienna, Austria DA - 12.06.2019 KW - Sliding wear KW - Polymer materials KW - Hydrogen methane PY - 2019 AN - OPUS4-48250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -