TY - GEN A1 - Ghosh, Sheuly A1 - Ueltzen, Katharina A1 - George, Janine A1 - Neugebauer, Jörg A1 - Körmann, Fritz T1 - Chemical ordering and magnetism in face-centered cubic CrCoNi alloy T2 - Research square preprints N2 - The impact of magnetism on chemical ordering in face-centered cubic CrCoNi medium entropy alloy is studied by a combination of ab initio simulations, machine learning potentials, and Monte Carlo simulations. Large magnetic energies are revealed for some mixed L12 /L10 type ordered configurations, which are rooted in strong nearest-neighbor magnetic exchange interactions and chemical bonding among the constituent elements. There is a delicate interplay between magnetism and stability of MoPt2 and L12 /L10 type of ordering which may explain opposing experimental and theoretical findings. KW - Bonding analysis KW - Alloys KW - Magnetism KW - Material design PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600040 DO - https://doi.org/10.21203/rs.3.rs-3978660/v1 SN - 2693-5015 SP - 1 EP - 13 PB - Research Square Platform LLC CY - Durham, NC AN - OPUS4-60004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ueltzen, Katharina A1 - George, Janine T1 - Bonding analysis results for "Chemical ordering and magnetism in face-centered cubic CrCoNi alloy" N2 - This repository contains the code and data to produce the results of chapter IIIC. Covalent bonding analysis for L12/L10 type configurations of the publication Chemical ordering and magnetism in face-centered cubic CrCoNi alloy by Sheuly Ghosh et al. KW - Magnetism KW - Bonding Analysis KW - Medium Entropy Alloys PY - 2024 DO - https://doi.org/10.5281/zenodo.11104874 PB - Zenodo CY - Geneva AN - OPUS4-59987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - New Opportunities for Data-Driven Chemistry and Materials Science Through Automation N2 - In recent years, many protocols in computational materials science have been automated and made available within software packages (primarily Python-based). This ranges from the automation of simple heuristics (oxidation states, coordination environments) to the automation of protocols, including multiple DFT and post-processing tools such as (an)harmonic phonon computations or bonding analysis. Such developments also shorten the time frames of projects after such developments have been made available and open new possibilities. For example, we can now easily make data-driven tests of well-known rules and heuristics or develop quantum chemistry-based materials descriptors for machine learning approaches. These tests and descriptors can have applications related to magnetic ground state predictions of materials relevant for spintronic applications or for predicting thermal properties relevant for thermal management in electronics. Combining high-throughput ab initio computations with fitting, fine-tuning machine learning models and predictions of such models within complex workflows is also possible and promises further acceleration in the field. In this talk, I will show our latest efforts to link automation with data-driven chemistry and materials science. T2 - MRS Spring CY - Seattle, Washington, USA DA - 21.04.2024 KW - Automation KW - Workflows KW - Chemical Bonding KW - Thermal Properties KW - Materials Design PY - 2024 AN - OPUS4-59982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding with bonding analysis N2 - Bonds and local atomic environments are crucial descriptors of material properties. They have been used to create design rules and heuristics and as features in machine learning of materials properties. Implementations and algorithms (e.g., ChemEnv and LobsterEnv) for identifying local atomic environments based on geometrical characteristics and quantum-chemical bonding analysis are nowadays available. Fully automatic workflows and analysis tools have been developed to use quantum-chemical bonding analysis on a large scale. The lecture will demonstrate how our tools, that assess local atomic environments and perform automatic bonding analysis, help to develop new machine learning models and a new intuitive understanding of materials.[5,6] Furthermore, the general trend toward automation in density functional-based materials science and some of our recent contributions will be discussed. T2 - Seminar of the Department of Chemistry at Imperial College London CY - Online meeting DA - 20.02.2024 KW - Automation KW - Magnetism KW - Bonding Analysis KW - Machine Learning PY - 2024 AN - OPUS4-59546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Naik, Aakash Ashok A1 - Ueltzen, Katharina A1 - Ertural, Christina A1 - Jackson, Adam J. A1 - George, Janine T1 - LobsterPy: A package to automatically analyze LOBSTERruns JF - Journal of Open Source Software N2 - The LOBSTER (Deringer et al., 2011;Maintz et al., 2013 ,2016 ;Nelson et al., 2020 ) software aids in extracting quantum-chemical bonding information from materials by projecting the plane-wave based wave functions from density functional theory (DFT) onto an atomic orbital basis. LobsterEnv, a module implemented in pymatgen (Ong et al., 2013) by some of the authors of this package, facilitates the use of quantum-chemical bonding information obtained from LOBSTER calculations to identify neighbors and coordination environments. LobsterPy is a Python package that offers a set of convenient tools to further analyze and summarize the LobsterEnv outputs in the form of JSONs that are easy to interpret and process. These tools enable the estimation of (anti) bonding contributions, generation of textual descriptions, and visualization of LOBSTER computation results. Since its first release, both LobsterPy and LobsterEnv capabilities have been extended significantly. Unlike earlier versions, which could only automatically analyze Crystal Orbital Hamilton Populations (COHPs) (Dronskowski & Blöchl, 1993), both can now also analyze Crystal Orbital Overlap Populations (COOP) (Hughbanks & Hoffmann, 1983) and Crystal Orbital Bond Index (COBI) (Müller et al., 2021). Extracting the information about the most important orbitals contributing to the bonds is optional, and users can enable it as needed. Additionally, bonding-based features for machinelearning (ML) studies can be engineered via the sub-packages “featurize” and “structuregraphs”. Alongside its Python interface, it also provides an easy-to-use command line interface (CLI) that runs automatic analysis of the computations and generates a summary of results and publication-ready figures. LobsterPy has been used to produce the results in Ngo et al. (2023), Chen et al. (2024), Naik et al. (2023), and it is also part of Atomate2 (2023) bonding analysis workflow for generating bonding analysis data in a format compatible with the Materials Project (Jain et al., 2013) API. KW - Materials Science KW - Automation KW - Bonding Analysis KW - Materials Properties PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595809 DO - https://doi.org/10.21105/joss.06286 VL - 9 IS - 94 SP - 1 EP - 4 PB - The Open Journal AN - OPUS4-59580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-Driven Chemical Understanding with Bonding Analysis N2 - Bonds and local atomic environments are crucial descriptors of material properties. They have been used to create design rules and heuristics and as features in machine learning of materials properties. Implementations and algorithms (e.g., ChemEnv and LobsterEnv) for identifying local atomic environments based on geometrical characteristics and quantum-chemical bonding analysis are nowadays available. Fully automatic workflows and analysis tools have been developed to use quantum-chemical bonding analysis on a large scale. The lecture will demonstrate how our tools, that assess local atomic environments and perform automatic bonding analysis, help to develop new machine learning models and a new intuitive understanding of materials. Furthermore, the general trend toward automation in density functional-based materials science and some of our recent contributions will be discussed. T2 - Otaniemi Center for Atomic-scale Materials Modeling Seminar CY - Aalto, Finland DA - 11.03.2024 KW - Automation KW - Materials Design KW - Bonding Analysis KW - Machine Learning PY - 2024 AN - OPUS4-59671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - High-throughput and automated bonding Analysis N2 - Talk as a part of the LOBSTER CECAM SCHOOL. This talk introduced all participants to automation tools around the software LOBSTER. T2 - CECAM LOBSTER School CY - Aalto, Finland DA - 12.03.2024 KW - Automation KW - Workflows KW - Bonding Analysis KW - Materials Design KW - Chemically Complex Materials PY - 2024 AN - OPUS4-59672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosen, Andrew S. A1 - Gallant, Max A1 - George, Janine A1 - Riebesell, Janosh A1 - Sahasrabuddhe, Hrushikesh A1 - Shen, Jimmy-Xuan A1 - Wen, Mingjian A1 - Evans, Matthew L. A1 - Petretto, Guido A1 - Waroquiers, David A1 - Rignanese, Gian-Marco A1 - Persson, Kristin A. A1 - Jain, Anubhav A1 - Ganose, Alex M. T1 - Jobflow: Computational Workflows Made Simple JF - Journal of Open Source Software N2 - We present Jobflow, a domain-agnostic Python package for writing computational workflows tailored for high-throughput computing applications. With its simple decorator-based approach, functions and class methods can be transformed into compute jobs that can be stitched together into complex workflows. Jobflow fully supports dynamic workflows where the full acyclic graph of compute jobs is not known until runtime, such as compute jobs that launch other jobs based on the results of previous steps in the workflow. The results of all Jobflow compute jobs can be easily stored in a variety of filesystem- and cloud-based databases without the data storage process being part of the underlying workflow logic itself. Jobflow has been intentionally designed to be fully independent of the choice of workflow manager used to dispatch the calculations on remote computing resources. At the time of writing, Jobflow workflows can be executed either locally or across distributed compute environments via an adapter to the FireWorks package, and Jobflow fully supports the integration of additional workflow execution adapters in the future. KW - Automation KW - Workflow KW - Computational Materials Science KW - Computations KW - Software PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593104 DO - https://doi.org/10.21105/joss.05995 VL - 9 IS - 93 SP - 1 EP - 7 PB - The Open Journal AN - OPUS4-59310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rosen, Andrew S. A1 - Gallant, Max A1 - George, Janine A1 - Riebesell, Janosh A1 - Sahasrabuddhe, Hrushikesh A1 - Shen, Jimmy-Xuan A1 - Wen, Mingjian A1 - Evans, Matthew L. A1 - Petretto, Guido A1 - Waroquiers, David A1 - Rignanese, Gian-Marco A1 - Persson, Kristin A. A1 - Jain, Anubhav A1 - Ganose, Alex M. T1 - Jobflow: Computational Workflows Made Simple N2 - Jobflow is a free, open-source library for writing and executing workflows. Complex workflows can be defined using simple python functions and executed locally or on arbitrary computing resources using the FireWorks workflow manager. Some features that distinguish jobflow are dynamic workflows, easy compositing and connecting of workflows, and the ability to store workflow outputs across multiple databases. KW - Automation KW - Workflows KW - Computational Materials Science PY - 2024 DO - https://doi.org/10.5281/zenodo.10466868 PB - Zenodo CY - Geneva AN - OPUS4-59313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Understanding and Machine Learning of Materials Properties with Quantum-Chemical Bonding Analysis N2 - Bonds and local atomic environments are crucial descriptors for material properties. They have been used to create design rules for materials and are used as features in machine learning of material properties. This talk will show how our recently developed tools, that automatically perform quantum chemical bond analysis and enable the study of chemical bonds and local atomic environments, accelerate and improve the development of such heuristics and machine-learned models for materials properties. T2 - Accelerate Conference 2023 CY - Toronto, Canada DA - 22.08.2023 KW - Automation KW - DFT KW - Bonds PY - 2023 AN - OPUS4-58131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - Bustamante, Joana A1 - Mieller, Björn A1 - Stawski, Tomasz A1 - George, Janine A1 - Knoop, F. T1 - High-quality zirconium vanadate samples for negative thermal expansion (NTE) analysis N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material which exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). The linear thermal expansion coefficient of ZrV2O7 is −7.1×10-6 K-. Therefore, it can be used to create composites with controllable expansion coefficients and prevent destruction by thermal shock. Material characterization, leading to application, requires pure, homogenous samples of high crystallinity via a reliable synthesis route. While there is a selection of described syntheses in the literature, it still needs to be addressed which synthesis route leads to truly pure and homogenous samples. Here, we study the influence of the synthesis methods (solid-state, sol-gel, solvothermal) and their parameters on the sample's purity, crystallinity, and homogeneity. The reproducibility of results and data obtained with scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry, and thermogravimetric analysis (DSC/TGA) were analyzed extensively. The sol-gel method proves superior to the solid-state method and produces higher-quality samples over varying parameters. Sample purity also plays an important role in NTE micro and macro-scale characterizations that explain the impact of porosity versus structural changes. Moreover, we implement ab-initio-based vibrational computations with partially treated anharmonicity (quasi-harmonic approximation, temperature-dependent effective harmonic potentials) in combination with experimental methods to follow and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder, microstructure, and defects. Khosrovani et al. and Korthuis et al., in a series of diffraction experiments, attributed the thermal contraction of ZrV2O7 to the transverse thermal motion of oxygen atoms in V-O-V linkages. In addition to previous explanations, we hypothesize that local disorder develops in ZrV2O7 crystals during heating. We are working on the experimental ZrV2O7 development and discuss difficulties one might face in the process as well as high-quality sample significance in further investigation. The obtained samples are currently used in the ongoing research of structure analysis and the negative thermal expansion mechanism. T2 - 4th International Symposium on Negative Thermal Expansion and Related Materials (ISNTE-4) CY - Padua, Italy DA - 04.07.2023 KW - NTE KW - Sol-gel KW - Solid-state KW - Ab-initio KW - TDEP PY - 2023 AN - OPUS4-58132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - Bustamante, Joana A1 - Mieller, Björn A1 - Stawski, Tomasz A1 - George, Janine A1 - Knoop, F. T1 - High-quality zirconium vanadate samples for negative thermal expansion (NTE) analysis N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material which exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). The linear thermal expansion coefficient of ZrV2O7 is −7.1×10-6 K-. Therefore, it can be used to create composites with controllable expansion coefficients and prevent destruction by thermal shock. Material characterization, leading to application, requires pure, homogenous samples of high crystallinity via a reliable synthesis route. While there is a selection of described syntheses in the literature, it still needs to be addressed which synthesis route leads to truly pure and homogenous samples. Here, we study the influence of the synthesis methods (solid-state, sol-gel, solvothermal) and their parameters on the sample's purity, crystallinity, and homogeneity. The reproducibility of results and data obtained with scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry, and thermogravimetric analysis (DSC/TGA) were analyzed extensively. The sol-gel method proves superior to the solid-state method and produces higher-quality samples over varying parameters. Sample purity also plays an important role in NTE micro and macro-scale characterizations that explain the impact of porosity versus structural changes. Moreover, we implement ab-initio-based vibrational computations with partially treated anharmonicity (quasi-harmonic approximation, temperature-dependent effective harmonic potentials) in combination with experimental methods to follow and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder, microstructure, and defects. Khosrovani et al. and Korthuis et al., in a series of diffraction experiments, attributed the thermal contraction of ZrV2O7 to the transverse thermal motion of oxygen atoms in V-O-V linkages. In addition to previous explanations, we hypothesize that local disorder develops in ZrV2O7 crystals during heating. We are working on the experimental ZrV2O7 development and discuss difficulties one might face in the process as well as high-quality sample significance in further investigation. The obtained samples are currently used in the ongoing research of structure analysis and the negative thermal expansion mechanism. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - NTE KW - Sol-gel KW - Solid-state KW - Ab-initio KW - TDEP PY - 2023 AN - OPUS4-58134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - Bustamante, Joana A1 - Mieller, Björn A1 - Stawski, Tomasz A1 - George, Janine A1 - Knoop, F. T1 - High-quality zirconium vanadate samples for negative thermal expansion (NTE) analysis N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material which exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). The linear thermal expansion coefficient of ZrV2O7 is −7.1×10-6 K-1. Therefore, it can be used to create composites with controllable expansion coefficients and prevent destruction by thermal shock. Material characterization, leading to application, requires pure, homogenous samples of high crystallinity via a reliable synthesis route. While there is a selection of described syntheses in the literature, it still needs to be addressed which synthesis route leads to truly pure and homogenous samples. Here, we study the influence of the synthesis methods (solid-state, sol-gel, solvothermal) and their parameters on the sample's purity, crystallinity, and homogeneity. The reproducibility of results and data obtained with scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry, and thermogravimetric analysis (DSC/TGA) were analyzed extensively. The sol-gel method proves superior to the solid-state method and produces higher-quality samples over varying parameters. Sample purity also plays an important role in NTE micro and macro-scale characterizations that explain the impact of porosity versus structural changes. Moreover, we implement ab-initio-based vibrational computations with partially treated anharmonicity (quasi-harmonic approximation, temperature-dependent effective harmonic potentials) in combination with experimental methods to follow and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder, microstructure, and defects. Khosrovani et al. and Korthuis et al., in a series of diffraction experiments, attributed the thermal contraction of ZrV2O7 to the transverse thermal motion of oxygen atoms in V-O-V linkages. In addition to previous explanations, we hypothesize that local disorder develops in ZrV2O7 crystals during heating. We are working on the experimental ZrV2O7 development and discuss difficulties one might face in the process as well as high-quality sample significance in further investigation. The obtained samples are currently used in the ongoing research of structure analysis and the negative thermal expansion mechanism. T2 - TDEP2023: Finite-temperature and anharmonic response properties of solids in theory and practice CY - Linköping, Sweden DA - 21.08.2023 KW - NTE KW - Sol-gel KW - Solid-state KW - Ab-initio KW - TDEP PY - 2023 AN - OPUS4-58135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding with geometrical and quantum-chemical bonding analysis N2 - Chemical bonding and coordination environments are crucial descriptors of material properties. They have previously been applied to creating chemical design guidelines and chemical heuristics. They are currently being used as features in machine learning more and more frequently. I will discuss implementations and algorithms (ChemEnv and LobsterEnv) for identifying these coordination environments based on geometrical characteristics and chemical bond quantum chemical analysis. I will demonstrate how these techniques helped in testing chemical heuristics like the Pauling rule and thereby improved our understanding of chemistry. I will also show how these tools can be used to create new design guidelines and a new understanding of chemistry. To use quantum-chemical bonding analysis on a large-scale and for machine-learning approaches, fully automatic workflows and analysis tools have been developed. After presenting the capabilities of these tools, I will also point out how these developments relate to the general trend towards automation in the field of density functional based materials science. T2 - UniSysCat - Colloquium CY - Berlin, Germany DA - 08.02.2023 KW - Automation KW - Chemical Bonds KW - High-throughput KW - Data Analysis PY - 2023 UR - https://www.unisyscat.de/news-events/display?tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Bnews%5D=386&cHash=f95c8af783c08c2c6039440145a036bb AN - OPUS4-57051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Automated quantum-chemical bonding analysis with workflow tools N2 - Bonds and local atomic environments are crucial descriptors of material properties. They have been used to create design rules and heuristics and as features in machine learning of materials properties. Implementations and algorithms (e.g., ChemEnv and LobsterEnv) for identifying local atomic environments based on geometrical characteristics and quantum-chemical bonding analysis are nowadays available. Fully automatic workflows and analysis tools have been developed to use quantum-chemical bonding analysis on a large scale. The lecture will demonstrate how our tools, that assess local atomic environments and perform automatic bonding analysis, help to develop new machine learning models and a new intuitive understanding of materials. Furthermore, other recent workflow contributions to the Materials Project software infrastructure (pymatgen, atomate2) related to phonons and machine-learning potentials will be discussed. T2 - ADIS Workshop 2023 CY - Tegernsee, Germany DA - 29.10.2023 KW - Automation KW - Materials Properties KW - DFT KW - Workflows KW - Machine Learning KW - Thermodynamic Properties PY - 2023 AN - OPUS4-58745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding and machine learning of materials properties N2 - Bonds and local atomic environments are crucial descriptors of material properties. They have been used to create design rules and heuristics for materials. More and more frequently, they are used as features in machine learning. Implementations and algorithms (e.g., ChemEnv and LobsterEnv) for identifying these local atomic environments based on geometrical characteristics and quantum-chemical bonding analysis are nowadays available. Fully automatic workflows and analysis tools have been developed to use quantum-chemical bonding analysis on a large scale and for machine-learning approaches. The latter relates to a general trend toward automation in density functional-based materials science. The lecture will demonstrate how our tools, that assess local atomic environments, helped to test and develop heuristics and design rules and an intuitive understanding of materials. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Irland DA - 03.07.2023 KW - Automation KW - Bonding Analysis KW - Materials Informatics PY - 2023 AN - OPUS4-57876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bustamante, Joana A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Ueltzen, Katharina A1 - George, Janine T1 - Thermodynamic and Thermoelectric Properties of the Canfieldite, (Ag8SnS6 ), in the Quasi-Harmonic Approximation N2 - Argyrodite-type materials have lately sparked a lot of research interest due to their thermoelectric properties.One promising candidate is canfieldite (Ag8SnS6), which has a Pna21 orthorhombic crystal structure at room temperature (RT). Recently, a new low-temperature (LT) phase transition of canfieldite at 120K has been found. Here, we investigate structural, vibrational and thermodynamic properties of Ag8SnS6 at room- and low-temperature employing density functional theory (DFT) and lattice dynamics computations. Thermal properties calculations were based on the quasi-harmonic approximation (QHA) as implemented in phonopy. We achieve good agreement with experiments. Thermal properties such as the constant-pressure heat capacity (Cp) and thermal conductivity are very close to experimental measurements. Furthermore, we compared RT and LT Ag8SnS6 Grüneisen parameters with argyrodites analogues, Ag8XS6 (X = Sn, Si, Ge), to arrive at an improved T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - Thermoelectric materials KW - DFT KW - QHA KW - Grüneisen parameter PY - 2023 AN - OPUS4-57887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials N2 - Understanding the chemistry and nature of individual chemical bonds is essential for materials design. Bonding analysis via the LOBSTER software package has provided valuable insights into the properties of materials for thermoelectric and catalysis applications. Thus, the data generated from bonding analysis becomes an invaluable asset that could be utilized as features in large-scale data analysis and machine learning of material properties. However, no systematic studies exist that conducted high-throughput materials simulations to curate and validate bonding data obtained from LOBSTER. Here we present an approach to constructing such a large database consisting of quantum-chemical bonding information. T2 - 16th International conference on materials chemistry (MC16) CY - Dublin, Ireland DA - 03.07.2023 KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 AN - OPUS4-57889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine T1 - Handling of orbital-resolved "ICOHPLIST.lobster" files from the software Lobster in pymatgen N2 - Python Materials Genomics (pymatgen) is a robust materials analysis code that defines classes for structures and molecules with support for many electronic structure codes. This open-source software package powers the Materials Project. In this particular contribution, the handling of obital-resolved "ICOHPLIST.lobster" files from Lobster was implemented in the software package (github handle: @JaGeo). KW - Bonding analysis KW - Density functional theory PY - 2023 UR - https://github.com/materialsproject/pymatgen/pull/2993 PB - Zenodo CY - Geneva AN - OPUS4-57569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bustamante, Joana A1 - Naik, Aakash Ashok A1 - Ueltzen, Katharina A1 - Ertural, Christina A1 - George, Janine T1 - Thermodynamic and Thermoelectric Properties of the Canfieldite, (Ag8SnS6 ), in the Quasi-Harmonic Approximation N2 - Argyrodite-type materials have lately sparked a lot of research interest due to their thermoelectric properties. One promising candidate is canfieldite (Ag8SnS6), which has a Pna21 orthorhombic crystal structure at room temperature (RT). Recently, Slade group found a new low-temperature (LT) phase transition of canfieldite at 120K. Therefore, we investigate structural, vibrational and thermodynamic properties of Ag8SnS6 at room- and low-temperature employing density-functional theory (DFT) and lattice dynamics computations. Thermal properties calculations were based on the quasi-harmonic approximation (QHA) as implemented in phonopy. We achieve good agreement with experiments. Lattice parameters were overestimated by 2%, and thermal properties such as the constant-pressure heat capacity Cp are very close to experimental measurements. Our simulations also reveal a possible new phase transition at around 312 K. Furthermore, we compared RT and LT Ag8SnS6 Grüneisen parameters with some argyrodites analogues, Ag8TS6 (T = Si, Ge, Ti and Sn), finding a relationship between the anharmonicity and low thermal conductivity. T2 - TDEP Summer School 2023 (TDEP2023: Finite-temperature and anharmonic response properties of solids in theory and practice) CY - Linköping, Sweden DA - 20.08.2023 KW - Thermoelectric materials KW - DFT KW - QHA KW - Grüneisen parameter PY - 2023 AN - OPUS4-58147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė A1 - George, Janine A1 - Mieller, Björn A1 - Stawski, Tomasz T1 - ZrV2O7 negative thermal expansion (NTE) material N2 - Zirconium vanadate (ZrV2O7) is a well-known negative thermal expansion (NTE) material that exhibits significant isotropic contraction over a broad temperature range (~150°C < T < 800°C). Therefore, it can be used to create composites with controllable expansion coefficients and prevent thermal stress, fatigue, cracking, and deformation at interfaces. We implement interdisciplinary research to analyze such material. We study the influence of the synthesis methods and their parameters on the sample's purity, crystallinity, and homogeneity. Moreover, we implement ab initio-based vibrational computations with partially treated anharmonicity in combination with experimental methods to follow temperature-induced structural changes and rationalize the negative thermal expansion in this material, including the influence of the local structure disorder. T2 - SALSA Make and Measure Conference CY - Berlin, Germany DA - 13.09.2023 KW - NTE KW - Composites KW - TEM PY - 2023 AN - OPUS4-58367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bustamante Pineda, Joana Cecibel A1 - George, Janine T1 - Sulfide-Argyrodites: Thermal properties within the QHA N2 - Argyrodite-type materials have lately sparked a lot of research interest due to their thermoelectric properties. One promising candidate is canfieldite (Ag8SnS6), which has a Pna21 orthorhombic crystal structure at room temperature (RT). Recently, experimentalists have found a new low-temperature (LT) phase transition of canfieldite at 120K. Therefore, we investigate structural, vibrational and thermodynamic properties of Ag8SnS6 at room- and low-temperature employing density-functional theory (DFT) and lattice dynamics computations. Thermal properties calculations were based on the quasi-harmonic approximation (QHA) as implemented in phonopy. We achieve good agreement with experiments. Lattice parameters were overestimated by 2%, and thermal properties such as the constant-pressure heat capacity Cp are very close to experimental measurements. Our simulations also reveal a possible new phase transition at around 312 K. Furthermore, we compared RT and LT Ag8SnS6 Grüneisen parameters with some argyrodites analogues, Ag8TQ6 (T = Si, Ge, Ti and Sn; Q = S, Se), finding a relationship between the anharmonicity and low thermal conductivity. T2 - SALSA Make and Measure Conference CY - Berlin, Germany DA - 13.09.2023 KW - Thermoelectric materials KW - DFT KW - QHA KW - Grüneisen parameter PY - 2023 AN - OPUS4-58368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hildebrandt, R. A1 - Seifert, M. A1 - George, Janine A1 - Blaurock, S. A1 - Botti, S. A1 - Krautscheid, H. A1 - Grundmann, M. A1 - Sturm, C. T1 - Determination of acoustic phonon anharmonicities via second-order Raman scattering in CuI T2 - arXiv.org N2 - We demonstrate the determination of anharmonic acoustic phonon properties via second-order Raman scattering exemplarily on copper iodide single crystals. The origin of multi-phonon features from the second-order Raman spectra was assigned by the support of the calculated 2-phonon density of states. In this way, the temperature dependence of acoustic phonons was determined down to 10\,K. To determine independently the harmonic contributions of respective acoustic phonons, density functional theory (DFT) in quasi-harmonic approximation was used. Finally, the anharmonic contributions were determined. The results are in agreement with earlier publications and extend CuI's determined acoustic phonon properties to lower temperatures with higher accuracy. This approach demonstrates that it is possible to characterize the acoustic anharmonicities via Raman scattering down to zero-temperature renormalization constants of at least 0.1cm−1. KW - DFT KW - Quasi-harmonic approximation KW - Raman KW - Phonons KW - Anharmonicity PY - 2023 UR - https://arxiv.org/abs/2305.18931 SP - 1 EP - 14 AN - OPUS4-58369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding with bonding analysis N2 - Bonds and local atomic environments are crucial descriptors of material properties. They have been used to create design rules and heuristics for materials. More and more frequently, they are used as features in machine learning. Implementations and algorithms (e.g., ChemEnv and LobsterEnv) for identifying these local atomic environments based on geometrical characteristics and quantum-chemical bonding analysis are nowadays available. Fully automatic workflows and analysis tools have been developed to use quantum-chemical bonding analysis on a large scale and for machine-learning approaches. The latter relates to a general trend toward automation in density functional-based materials science. The lecture will demonstrate how our tools, that assess local atomic environments, helped to test and develop heuristics and design rules and an intuitive understanding of materials. T2 - 2023 MRS Fall Meeting & Exhibit CY - Boston, Massachusetts, USA DA - 26.11.2023 KW - Automation KW - Machine learning KW - Materials Understanding KW - Magnetism KW - Phonons PY - 2023 AN - OPUS4-59002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Philipp T1 - A Quantum-Chemical Bonding Database for Solid-State Materials N2 - A deep insight into the chemistry and nature of individual chemical bonds is essential for understanding materials. Bonding analysis is expected to provide important features for large-scale data analysis and machine learning of material properties. Such information on chemical bonds can be calculated using the LOBSTER (www.cohp.de) software package, which post-processes data from modern density functional theory computations by projecting plane wave-based wave functions onto a local atomic orbital basis. We have performed bonding analysis on 1520 compounds (insulators and semiconductors) using a fully automated workflow combining the VASP and LOBSTER software packages. We then automatically evaluated the data with LobsterPy (https://github.com/jageo/lobsterpy) and provide results as a database. The projected densities of states and bonding indicators are benchmarked on VASP projections and available heuristics, respectively. Lastly, we illustrate the predictive power of bonding descriptors by constructing a machine-learning model for phononic properties, which shows an increase in prediction accuracies by 27 % (mean absolute errors) compared to a benchmark model differing only by not relying on any quantum-chemical bonding features. T2 - Sommersymposium des Fördervereins Chemieolympiade CY - Online meeting DA - 15.04.2023 KW - Automation KW - Chemical Bonds KW - DFT KW - Quantum Chemistry PY - 2023 AN - OPUS4-57310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 8) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852823 PB - Zenodo CY - Geneva AN - OPUS4-57448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding with geometrical and quantum-chemical bonding analysis N2 - Talk about my recent research on data-driven chemical understanding with geometrical and quantum-chemical bonding analysis. T2 - Donnerstagskolloquium IPC/IAAC CY - Münster, Germany DA - 04.05.2023 KW - Automation KW - Machine learning KW - Bonding Analysis PY - 2023 AN - OPUS4-57431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials (JSONS: Part 1) N2 - This database consists of bonding data computed using Lobster for 1520 solid-state compounds consisting of insulators and semiconductors. It consists of two kinds of json files. Smaller lightweight JSONS consists of summarized bonding information for each of the compounds. The files are named as per ID numbers in the materials project database. Here we provide also the larger computational data json files for 700 compounds. This files consists of all important LOBSTER computation output files data stored as dictionary. KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7794811 PB - Zenodo CY - Geneva AN - OPUS4-57439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - A Quantum-Chemical Bonding Database for Solid-State Materials (JSONS: Part 2) N2 - This database consists of bonding data computed using Lobster for 1520 solid-state compounds consisting of insulators and semiconductors. The files are named as per ID numbers in the materials project database. Here we provide the larger computational data JSON files for the rest of the 820 compounds. This file consists of all important LOBSTER computation output files data stored as a dictionary. KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7821727 PB - Zenodo CY - Geneva AN - OPUS4-57440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 1) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) Refer to README.md file instructions to reproduce the data. KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852082 PB - Zenodo CY - Geneva AN - OPUS4-57441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 2) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852107 PB - Zenodo CY - Geneva AN - OPUS4-57442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 3) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852791 PB - Zenodo CY - Geneva AN - OPUS4-57443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 4) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852798 PB - Zenodo CY - Geneva AN - OPUS4-57444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 5) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852806 PB - Zenodo CY - Geneva AN - OPUS4-57445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 6) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852808 PB - Zenodo CY - Geneva AN - OPUS4-57446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Naik, Aakash Ashok A1 - Ertural, Christina A1 - Dhamrait, Nidal A1 - Benner, Phillip A1 - George, Janine T1 - Quantum-Chemical Bonding Database (Unprocessed data : Part 7) N2 - This data is associated with the manuscript "A Quantum-Chemical Bonding Database for Solid-State Materials." Refer to mpids.txt to see data related to which compounds are available in the tar file. (mp-xxx refer to Materials Project ID) KW - Bonding analysis KW - Automation KW - Materials Informatics KW - Computational Chemistry KW - Database PY - 2023 DO - https://doi.org/10.5281/zenodo.7852820 PB - Zenodo CY - Geneva AN - OPUS4-57447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine A1 - Breßler, Ingo A1 - Benner, Philipp T1 - Jupyter notebook and VASP calculation details accompanying the manuscript: "Ultima Ratio: Simulating wide-range X-ray scattering and diffraction" N2 - ## Summary: This notebook and associated datasets (including VASP details) accompany a manuscript available on the ArXiv (https://doi.org/10.48550/arXiv.2303.13435) and hopefully soon in a journal as short communication as well. Most of the details needed to understand this notebook are explained in that paper with the same title as above. For convenience, the abstract is repeated here: ## Paper abstract: We demonstrate a strategy for simulating wide-range X-ray scattering patterns, which spans the small- and wide scattering angles as well as the scattering angles typically used for Pair Distribution Function (PDF) analysis. Such simulated patterns can be used to test holistic analysis models, and, since the diffraction intensity is presented coupled to the scattering intensity, may offer a novel pathway for determining the degree of crystallinity. The ``Ultima Ratio'' strategy is demonstrated on a 64-nm Metal Organic Framework (MOF) particle, calculated from $Q<0.01$\,$\mathrm{nm}^{-1}$ up to $Q\approx150$\,$\mathrm{nm}^{-1}$, with a resolution of 0.16\,\AA. The computations exploit a modified 3D Fast Fourier Transform (3D-FFT), whose modifications enable the transformations of matrices at least up to $8000^3$ voxels in size. Multiple of these modified 3D-FFTs are combined to improve the low-$Q$ behaviour. The resulting curve is compared to a wide-range scattering pattern measured on a polydisperse MOF powder. While computationally intensive, the approach is expected to be useful for simulating scattering from a wide range of realistic, complex structures, from (poly-)crystalline particles to hierarchical, multicomponent structures such as viruses and catalysts. KW - X-ray KW - Simulation KW - Scattering KW - MOUSE KW - Nanomaterials KW - XRD KW - SAXS KW - PDF KW - total scattering KW - 3D Fourier Transform KW - High Resolution KW - FFT PY - 2023 UR - https://doi.org/10.48550/arXiv.2303.13435 DO - https://doi.org/10.5281/zenodo.7764044 PB - Zenodo CY - Geneva AN - OPUS4-57207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Laskina, Sofya A1 - Naik, Aakash Ashok A1 - Smales, Glen Jacob A1 - George, Janine A1 - Breßler, Ingo A1 - Benner, Philipp T1 - "Ultima Ratio": Simulating wide-range X-ray scattering and diffraction T2 - ArXiv N2 - We demonstrate a strategy for simulating wide-range X-ray scattering patterns, which spans the small- and wide scattering angles as well as the scattering angles typically used for Pair Distribution Function (PDF) analysis. Such simulated patterns can be used to test holistic analysis models, and, since the diffraction intensity is on the same scale as the scattering intensity, may offer a novel pathway for determining the degree of crystallinity. The "Ultima Ratio" strategy is demonstrated on a 64-nm Metal Organic Framework (MOF) particle, calculated from Q < 0.01 1/nm up to Q < 150 1/nm, with a resolution of 0.16 Angstrom. The computations exploit a modified 3D Fast Fourier Transform (3D-FFT), whose modifications enable the transformations of matrices at least up to 8000^3 voxels in size. Multiple of these modified 3D-FFTs are combined to improve the low-Q behaviour. The resulting curve is compared to a wide-range scattering pattern measured on a polydisperse MOF powder. While computationally intensive, the approach is expected to be useful for simulating scattering from a wide range of realistic, complex structures, from (poly-)crystalline particles to hierarchical, multicomponent structures such as viruses and catalysts. KW - X-ray KW - Simulation KW - 3D Fourier Transform KW - High resolution KW - XRD KW - SAXS KW - PDF KW - Total scattering KW - X-ray scattering KW - Metal organic framework KW - Electron density map KW - FFT PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572067 DO - https://doi.org/10.48550/arXiv.2303.13435 VL - Cornell University SP - 1 EP - 12 PB - Ithaca, NY AN - OPUS4-57206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine A1 - Petretto, G. A1 - Naik, Aakash Ashok A1 - Esters, M. A1 - Jackson, A. J. A1 - Nelson, R. A1 - Dronskowski, R. A1 - Rignanese, G.-M. A1 - Hautier, G. T1 - Automated bonding analysis with crystal orbital Hamilton populations (program code LobsterPy) N2 - This is the code for the program LobsterPy that can be used to automatically analyze and plot outputs of the program Lobster. KW - Automation KW - High-throughput computations KW - Bonding analysis PY - 2022 UR - https://doi.org/10.5281/zenodo.6320074 UR - https://doi.org/10.5281/zenodo.6415169 UR - https://doi.org/10.5281/zenodo.6415336 UR - https://doi.org/10.5281/zenodo.6581118 DO - https://doi.org/10.5281/zenodo.6320073 PB - Zenodo CY - Geneva AN - OPUS4-55174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine T1 - Raw data for "Automated bonding analysis with crystal orbital Hamilton populations" N2 - Raw data corresponding to the following paper: 10.1002/cplu.202200123. KW - Automation KW - High-throughput computations KW - Bonding analysis PY - 2022 UR - https://doi.org/10.5281/zenodo.6373369 DO - https://doi.org/10.5281/zenodo.6373368 PB - Zenodo CY - Geneva AN - OPUS4-55175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - George, Janine A1 - Naik, Aakash Ashok A1 - Jackson, A. J. A1 - Baird, S. T1 - Scripts to reproduce "Automated bonding analysis with crystal orbital Hamilton populations" N2 - This repo allows to recreate our publication: https://doi.org/10.1002/cplu.202200123 In contrast to 0.2.2, we fixed an issue with absolute path. KW - Automation KW - High-throughput computations KW - Bonding analysis PY - 2022 UR - https://github.com/JaGeo/LobsterAutomation UR - https://doi.org/10.5281/zenodo.6421928 UR - https://doi.org/10.5281/zenodo.6595062 UR - https://doi.org/10.5281/zenodo.6599556 UR - https://doi.org/10.5281/zenodo.6674670 UR - https://doi.org/10.5281/zenodo.6704163 DO - https://doi.org/10.5281/zenodo.6421927 PB - Zenodo CY - Geneva AN - OPUS4-55177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding N2 - Chemical heuristics are essential to understanding molecules and materials in chemistry. The periodic table, atomic radii, and electronegativities are only a few examples. Initially, they have been developed by a combination of physical insight and a limited amount of data. It is now possible to test these heuristics and generate new ones using automation based on Materials Informatic tools like pymatgen and greater amounts of data from databases such as a Materials Project. In this session, I'll speak about heuristics and design rules based on coordination environments and the concept of chemical bonding. For example, we have tested the Pauling rules which describe the stability of materials based on coordination environments and their connections on 5000 oxides from the Materials Project. In addition, we have created automated processes for analyzing the chemical bonding situation in crystalline materials with Lobster (www.cohp.de) in order to discover new heuristics and design rules. T2 - Materials Project Seminar Series CY - Online meeting DA - 18.05.2022 KW - DFT KW - Chemical heuristics KW - Crystal Orbital Hamilton Populations KW - Machine learning KW - Phonons PY - 2022 UR - https://www.youtube.com/watch?v=e7zYrz6fgog UR - https://next-gen.materialsproject.org/community/seminar AN - OPUS4-55008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Mit Hilfe künstlicher Intelligenz neue Materialien finden N2 - In diesem Vortrag für Schüler*innen, die an der nationalen Auswahl der internationalen Chemieolympiade teilnehmen, stellte ich meinen akademischen Werdegang und das Fach Materialinformatik und die Forschung in diesem Bereich vor. T2 - Landesseminar zur Internationalen Chemieolympiade in Berlin-Brandenburg CY - Berlin, Germany DA - 30.10.2022 KW - Materialinformatik KW - Automatisierung KW - Computerchemie PY - 2022 AN - OPUS4-56128 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven chemical understanding with geometrical and quantum-chemical bonding analysis N2 - Chemical bonding and coordination environments are crucial descriptors of material properties. They have previously been applied to creating chemical design guidelines and chemical heuristics. They are currently being used as features in machine learning more and more frequently. I will discuss implementations and algorithms (ChemEnv and LobsterEnv) for identifying these coordination environments based on geometrical characteristics and chemical bond quantum chemical analysis. I'll demonstrate how these techniques helped in testing chemical heuristics like the Pauling rule and thereby improved our understanding of chemistry. I'll also show how these tools can be used to create new design guidelines and a new understanding of chemistry. To use quantum-chemical bonding analysis on a large-scale and for machine-learning approaches, fully automatic workflows and analysis tools have been developed. After presenting the capabilities of these tools, I will also point out how these developments relate to the general trend towards automation in the field of density functional based materials science. T2 - ICAMS Interdisciplinary Centre for Advanced Materials Simulation Seminar Series CY - Online meeting DA - 24.11.2022 KW - Automation KW - High-throughput KW - Machine learning KW - Materials informatics KW - Bonding Analysis PY - 2022 AN - OPUS4-56417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Automation and workflows incomputational materials science N2 - This talk introduced the audience to automation and workflows in the field of computational materials science. The audience were the members of the FONDA Sonderforschungsbereich at HU Berlin T2 - FONDA Seminar Series CY - Berlin, Germany DA - 10.10.2022 KW - Automation KW - Workflows KW - Materials Informatics PY - 2022 AN - OPUS4-56419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Automation and Workflows in Computational Materials Science N2 - This talks describes why we need automation and workflows in materials informatics. It introduces tools to automatize tasks in computational materials science. Furthermore, a bonding analysis and a phonon workflow are presented. T2 - Seminar in Theoretical Chemistry Group atFU Berlin CY - Berlin, Germany DA - 06.12.2022 KW - Automation KW - Workflows KW - Density functional theory PY - 2022 AN - OPUS4-56524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Accelerated materials discovery with data analysis and machine learning N2 - Talk on my research on machine-learning and automation for students of TU Berlin T2 - TU Berlin Seminar CY - Online meeting DA - 24.01.2022 KW - Automation KW - High-throughput KW - DFT PY - 2022 AN - OPUS4-54686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Mit Hilfe künstlicher Intelligenz neue Materialien finden N2 - Dieser Vortrag wurde im Rahmen einer Outreach-Veranstaltung für Schüler*innen gehalten (https://www.hansenberg.de/lernen/hansenberg-summit/summit-2022.html). Er beschreibt, wie wir an der BAM und an anderen Institutionen nach neuen Materialien suchen. T2 - Hansenberg Summit CY - Geisenheim, Germany DA - 09.07.2022 KW - Materialdesign KW - Materialinformatik PY - 2022 AN - OPUS4-55408 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Automated bonding analysis based on crystal orbital Hamilton populations N2 - We created a workflow that fully automates bonding analysis using Crystal Orbital Hamilton Populations, which are bond-weighted densities of states. This enables understanding of crystalline material properties based on chemical bonding information. To facilitate data analysis and machine-learning research, our tools include automatic plots, automated text output, and output in machine-readable format. T2 - Sommersymposium des Fördervereins Chemieolympiade CY - Online meeting DA - 25.06.2022 KW - Bonding Analysis KW - Automation KW - DFT PY - 2022 AN - OPUS4-55409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-Driven Chemical Understanding N2 - This talk presents my research on data-driven chemical understanding to graduate students in chemistry at the Graduate School Chemistry in Paris. T2 - Workshop : Practical applications of Machine Learning in chemistry: perspectives and pitfalls CY - Paris, France DA - 13.07.2022 KW - Chemical Understanding KW - Automation KW - Bonding Analysis PY - 2022 UR - https://gs-chem13.sciencesconf.org/ AN - OPUS4-55410 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -