TY - JOUR A1 - Tuma, Dirk A1 - Safarov, J. A1 - Sperlich, C. A1 - Namazova, A. A1 - Aliyev, A. A1 - Shahverdiyev, A. A1 - Hassel, E. T1 - Carbon dioxide solubility in 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrachloroferrate over an extended range of temperature and pressure N2 - Solubility data of carbon dioxide (CO2) in the two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium tetrachloroferrate [BMIM][FeCl4] at T = (273.15-413.15) K and pressures up to p = 4.5 MPa are presented. In Addition to the experiments, a literature review was done to compare the new results with published solubility data. The measurements were carried out using an isochoric method which operates in decrements of deltaT = 20 K within the investigated temperature range and at selected four different pressure steps ranging from a pressure p of around 4.5 MPa to around 0.5 MPa. The solubility of CO2 decreases in both ionic liquids with increasing temperatures. Within the p,T-range investigated, CO2 displayed a solubility in [BMIM][BF4] from a mole fraction x = 0.0117 and a corresponding molality m = 0.0526 mol/kg at T = 413.15 K and p = 0.417 MPa up to x = 0.4876 and m = 4.2094 mol/kg at T = 293.15 K and p = 4.349 MPa. The corresponding values for the solubility in [BMIM][FeCl4] start at a mole fraction x = 0.0268 and a corresponding molality m = 0.0818 mol/kg at T = 413.15 K and p = 0.443 MPa and end at x = 0.5126 and m = 3.1216 mol/kg at T = 293.15 K and p = 4.478 MPa. At a constant temperature, CO2 is better soluble in [BMIM][FeCl4] than in [BMIM][BF4] and the mean value of the solubility difference related to mole fraction x over the pressure range investigated amounts to about 4 % at T = 273.15 K and monotonously increases to about 92 % at T = 413.15 K. Henry's law constant as well as derived thermodynamic properties, such as the Gibbs energy of solvation, the enthalpy of solvation, the entropy of solvation, and the heat capacity of solvation, were calculated and discussed regarding the solute-solvent molecular interactions. KW - Ionic liquid KW - Gas solubility KW - Henry's law constant KW - Solvation properties PY - 2018 U6 - https://doi.org/10.1016/j.fluid.2018.03.019 SN - 0378-3812 SN - 1879-0224 VL - 467 SP - 45 EP - 60 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-44892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bulakhe, R. N. A1 - Nguyen, V. Q. A1 - Lee, Y. R. A1 - Zhang, H. A1 - Zhang, S. A1 - Shim, J.-J. A1 - Tuma, Dirk T1 - Chemically grown 3D copper hydroxide electrodes with different morphologies for high-performance asymmetric supercapacitors N2 - The present study investigated decoration of Cu(OH)₂ with different morphologies by copper precursors on 3D nickel foam. The Cu(OH)₂-A (nano flower)electrode showed an excellent capacitance of 1332 Fg⁻¹ at current density of 2 Ag⁻¹ compared to the Cu(OH)₂-C (nano ribbon, 1100 Fg⁻¹) and Cu(OH)₂-S (nano Long leaf, 1013 Fg⁻¹) electrodes. An asymmetric supercapacitor (ASC) was fabricated and showed a Maximum capacitance of 165 Fg⁻¹ at current density of 2 Ag⁻¹ with high energy density of 66.7 Wh kg⁻¹ and power density of 5698 W kg⁻¹ with excellent stability of 80 % after 10,000 cycles. KW - Copper hydroxide KW - Nickel foam KW - Supercapacitor PY - 2018 U6 - https://doi.org/10.1016/j.jiec.2018.05.043 SN - 1226-086X SN - 1876-794X VL - 66 SP - 288 EP - 297 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-45930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nguyen, V. Q. A1 - Baynosa, M. L. A1 - Nguyen, V. H. A1 - Tuma, Dirk A1 - Lee, Y. R. A1 - Shim, J.-J. T1 - Solvent-driven morphology-controlled synthesis of highly efficient long-life ZnO/graphene nanocomposite photocatalysts for the practical degradation of organic wastewater under solar light N2 - Metal oxide/graphene photocatalysts have been attracting considerable attention in solving environmental pollution problems because of the limitations of the semiconductor-based photocatalysts. In this study, highly efficient and inexpensive zinc oxide (ZnO) nanoparticles with three different morphologies, such as nanospheres, nanodisks, and nanorods, anchored on reduced graphene oxide (RGO) were synthesized in solvent mixtures with different ethanol to water ratios. Among the three morphologies, the nanospherical ZnO/RGO (sZG) Composite exhibited the highest methylene blue (MB) and rhodamine B removal efficiencies at 99% and 98%, respectively, after only 60 min under low-power (40 W) ultraviolet irradiation at a low catalyst loading of 0.1 g L−1. This nanocomposite also showed excellent photocatalytic stability under UV irradiation, retaining 96% Efficiency even after 15 cycles of MB degradation. Moreover, the sZG composite exhibited a high MB degradation Efficiency of approximately 99% after 100 min at a low catalyst loading of 0.2 g L−1 under solar light illumination. The excellent photocatalytic performance and high stability of this low-cost nanospherical ZnO/RGO Composite exemplarily highlights the potential of sustainable next-generation photocatalysis for treating wastewater containing organic pollutants. KW - Nanocomposite KW - Photocatalyst KW - Dye degradation PY - 2019 U6 - https://doi.org/10.1016/j.apsusc.2019.03.262 SN - 0169-4332 SN - 1873-5584 VL - 486 SP - 37 EP - 51 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-48081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mady, A. H. A1 - Baynosa, M. L. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Heterogeneous activation of peroxymonosulfate by a novel magnetic 3D gamma- MnO2@ZnFe2O4/rGO nanohybrid as a robust catalyst for phenol degradation N2 - Three-dimensional (3D) γ-MnO2@ZnFe2O4/reduced graphene oxide (rGO) nanohybrids were synthesized using a one-pot hydrothermal self-assembly method. The morphology and properties of the nanohybrids were investigated. The synergistic interactions among γ-MnO2, ZnFe2O4, and rGO resulted in 3D nanoflakes distributed uniformly in the rGO structure with a thickness of approximately 2–5 nm, leading to a high surface area. The nanohybrid containing 10 wt. % rGO exhibited superior catalytic activities for phenol degradation through the activation of peroxymonosulfate (PMS) to generate active sulfate radicals (SO4 •–). Typically, 50 mL of a 20 ppm phenol solution was degraded completely and 85% of the carbon content had been mineralized in 30 min at 25 °C using 10 mg of the nanohybrid. The nanohybrid could be recovered easily using a magnet and reused, maintaining high stability during catalytic oxidation. The 3D γ-MnO2@ZnFe2O4/rGO nanohybrid catalyst could be applied to the removal of hard-to-degrade waste materials owing to its high efficiency and excellent reusability. KW - Graphene KW - Nanohybrid KW - Degradation PY - 2019 U6 - https://doi.org/10.1016/j.apcatb.2018.11.086 SN - 0926-3373 SN - 1873-3883 VL - 244 SP - 946 EP - 956 PB - Elsevier BV CY - Amsterdam AN - OPUS4-47134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baynosa, M. L. A1 - Mady, A. H. A1 - Nguyen, V. Q. A1 - Kumar, D. R. A1 - Sayed, M. S. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Eco-friendly synthesis of recyclable mesoporous zinc ferrite@reduced graphene oxide nanocomposite for efficient photocatalytic dye degradation under solar radiation N2 - Zinc ferrite and graphene composites have attracted considerable attention in wastewater treatment. In this work, a magnetically separable mesoporous composite of ZnFe2O4 nanoparticles (NPs) and reduced graphene oxide (rGO) was prepared through a simple and eco-friendly method with pure water as solvent and without the need for subsequent thermal treatment. Uniformly dispersed ZnFe2O4 NPs on the surface of rGO sheets exhibited good crystallinity and a large BET specific surface area. These factors contributed to good photocatalytic performance of the composite for the degradation of methylene blue (MB) under simulated solar-light radiation, increased adsorptivity, increased separation efficiency of the photo-excited charges on the surface of the catalyst, and broadened light-absorption range of the composite. Efficient interfacial interaction between the ZnFe2O4 NPs and rGO sheets resulted in synergistic effects. The magnetically separable ZnFe2O4@rGO nanocomposite proved an efficient and stable catalyst in three consecutive photodegradation cycles for MB dye in aqueous solution under solar radiation. In addition, the synthesis method proposed in this study could be scaled-up easily due to the simplicity of the process, the lack of a toxic reagent, and the use of low temperatures. KW - Zinc ferrite KW - Reduced graphene oxide KW - Nanocomposite KW - Wastewater PY - 2020 U6 - https://doi.org/10.1016/j.jcis.2019.11.018 SN - 0021-9797 VL - 561 SP - 459 EP - 469 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-50211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Shiflett, M. B. A1 - Magee, J. W. A1 - Tuma, Dirk ED - Shiflett, M. B. T1 - Important Developments in the History of Ionic Liquids from Academic Curiosity to Commercial Processes and Products N2 - Twenty years ago, research involving ionic liquids was a minor field of interest, and only a few chemists and even fewer engineers were interested in salts with melting points near room temperature. In April 2000, the first NATO advanced research workshop on ionic liquids was held in Heraklion, Crete. The conference was the first international meeting devoted to ionic liquids and attracted most of the active researchers at that time. Following that meeting, activity in the field began to flourish and the first books and international conferences devoted to ionic liquids began to appear. By the end of 2018, more than 80,000 scientific papers had been published, and 17,000 patents were applied for in the field of ionic liquids! This book provides an overview of the current and emerging industrial applications of ionic liquids covering the core processes and products, the practical implementation and technical challenges involved, and the potential future directions for Research and development. The individual chapters were written by leading scientists in the field from industry and academia to address specific processes and products that are or will be soon commercialized. Examples include the use of a chloroaluminate ionic liquid as a next-generation alkylation catalyst to a new class of capillary gas chromatography (GC) columns with stationary phases based on ionic liquids. Over the past twenty years, there has been a growing realization that ionic liquids have moved from being mere academic curiosities to having genuine applications in fields as wide-ranging as advanced materials, biotechnology, catalysis, pharmaceuticals, renewable fuels, and sustainable energy. There are many optimistic indications that ionic liquids are on their way to becoming a commercial success story. This first book on “Commercial Applications of Ionic Liquids” provides over 50 applications that are either at the pilot scale or have been commercialized, which indicates that an exciting new chapter in the field of ionic liquids is about to begin! KW - Ionic Liquids KW - Historical Developments KW - Advanced Materials PY - 2020 SN - 978-3-030-35245-5 U6 - https://doi.org/10.1007/978-3-030-35245-5_1 SN - 2196-6990 SP - 3 EP - 29 PB - Springer CY - Cham AN - OPUS4-50453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Iqbal, S. A1 - Mady, A. H. A1 - Kim, Y.-I. A1 - Javed, U. A1 - Shafi, P. M. A1 - Nguyen, V. Q. A1 - Hussain, I. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Self-templated hollow nanospheres of B-site engineered non-stoichiometric perovskite for supercapacitive energy storage via anion-intercalation mechanism N2 - The continual increase in energy demand and inconsistent supply have attracted attention towards sustainable energy storage/conversion devices, such as electrochemical capacitors with high energy densities and power densities. Perovskite oxides have received significant attention as anion-intercalation electrode materials for electrochemical capacitors. In this study, hollow nanospheres of nonstoichiometric cubic perovskite fluorides, KNi1-xCoxF3-delta (x = 0.2; delta = 0.33) (KNCF-0.2) have been synthesized using a localized Ostwald ripening. The electrochemical performance of the non-stoichiometric perovskite has been studied in an aqueous 3 M KOH electrolyte to categorically investigate the fluorine-vacancy-mediated charge storage capabilities. High capacities up to 198.55 mA h g-1 or 714.8 C g-1 (equivalent to 1435 F g-1) have been obtained through oxygen anion-intercalation mechanism (peroxide pathway, O-). The results have been validated using ICP (inductively coupled Plasma mass spectrometry) analysis and cyclic voltammetry. An asymmetric supercapacitor device has been fabricated by coupling KNCF-0.2 with activated carbon to deliver a high energy density of 40 W h kg-1 as well as excellent cycling stability of 98 % for 10,000 cycles. The special attributes of hollow-spherical, non-stoichiometric perovskite (KNCF-0.2) have exhibited immense promise for their usability as anion-intercalation type electrodes in supercapacitors. KW - Nanospheres KW - Perovskite KW - Supercapacitor PY - 2021 U6 - https://doi.org/10.1016/j.jcis.2021.03.147 SN - 0021-9797 VL - 600 SP - 729 EP - 739 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Safarov, J. A1 - Abdullayeva, G. A1 - Bashirov, M. A1 - Tuma, Dirk A1 - Bashirov, R. T1 - The ionic liquid 1-ethyl-3-methylimidazolium methanesulfonate revisited: Solubility of carbon dioxide over an extended range of temperature and pressure N2 - Solubility data of carbon dioxide (CO2) in the ionic liquid 1-ethyl-3-methylimidazolium methanesulfonate [EMIM][CH3SO3] at T= (273.15 to 413.15) K and pressures up to p= 5.0 MPa are reported. The solubility measurements were carried out using an isochoric method which operates in decrements of ΔT = 20 K within the investigated temperature range and at selected four different pressure steps ranging froma pressure p of around 5.0 MPa down to around 0.4 MPa. The solubility of CO2 in the ionic liquid monotonously decreases with increasing temperatures at a constant pressure. Within the p,T-range investigated, CO2 displayed a solubility in [EMIM] [CH3SO3] from a mole fraction x= 0.0160 mol·mol−1 and a corresponding molality m = 0.0791 mol·kg−1 at T = 413.15 K and p =0.432 MPa up to x = 0.4049 mol·mol−1 and m = 3.2982 mol·kg−1 at T = 293.15 K and p = 4.577 MPa. Henry's law constant was calculated from the solubility data reported here, and literature data were reviewed for comparison. Additionally, thermodynamic state properties that can be derived from Henry's law constant, such as the Gibbs energy of solvation ΔsolG, the enthalpy of solvation ΔsolH, the entropy of solvation ΔsolS, and the heat capacity of solvation ΔsolCp, were calculated. KW - Hydrophilic ionic liquid KW - Carbon dioxide KW - High-pressure solubility PY - 2021 U6 - https://doi.org/10.1016/j.molliq.2021.115920 SN - 0167-7322 VL - 333 SP - 115920 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-52436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dahmen, N. A1 - Deiters, U. K. A1 - Tuma, Dirk T1 - In Memoriam - Professor Dr. rer. nat. Gerhard Manfred Schneider N2 - In Memoriam Professor Dr. rer. nat. Gerhard Manfred Schneider (May 7, 1932 – October 16, 2020) Professor and Chair of Physical Chemistry, Ruhr-University, Bochum, Germany (1969-1997) KW - Obituary KW - Physical Chemistry KW - Phase Equilibria PY - 2021 U6 - https://doi.org/10.1016/j.supflu.2021.105219 SN - 0896-8446 VL - 174 SP - 105219 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tuma, Dirk A1 - Shafi, P. M. A1 - Mohapatra, D. A1 - Reddy, V. P. A1 - Dhakal, G. A1 - Kumar, D. R. A1 - Brousse, T. A1 - Shim, J.-J. T1 - Sr- and Fe-substituted LaMnO3 Perovskite: Fundamental insight and possible use in asymmetric hybrid supercapacitor N2 - The symmetry or structural stability of ABO3-type perovskite oxides depends largely on the size of ‘A’ and ‘B’ cations, which determines the material properties. The partial substitution of these cations may be used to tune these properties. The ionic sizes and valence states of the cations play an important role in improving the prop- erties of perovskite. In this study, the substitution of La3+ with Sr2+ with a larger ionic radius and Mn3+ with Fe3+ with a similar ionic radius favored both the crystal symmetry and the mixed ionic–electronic conductivity of the perovskite. Electrodes based on La0.7Sr0.3Mn0.5Fe0.5O3 (LSMFO55) exhibited a faradaic behavior with a specific capacity of 330 C g−1 (92 mAh g−1 ) at 12C rate, while this electrode maintained a capacity of 259 C g−1 at 240C (charge or discharge in 15 s). Additionally, exohedral carbon nano-onions (CNO) were introduced as a negative electrode to design an asymmetric hybrid supercapacitor (AHS) with a widened cell voltage. The use of CNO as a negative electrode in the AHS improved the rate capability drastically compared to the use of rGO. This device maintained a good energy density even at an extra-high charging rate (600C) owing to its outstanding rate capability. The high-rate performance of the LSMFO55//CNO AHS can be elucidated by successful fabrication with a mixed ionic–electronic conductive positive electrode and a CNO negative electrode. Tuning the electronic and ionic conductivities by cationic substitution and adopting an appropriate carbon-derived negative electrode (such as CNO) can provide a practical high-rate hybrid device using various perovskites. KW - Perovskite KW - Carbon nano-onion KW - Supercapacitor PY - 2022 U6 - https://doi.org/10.1016/j.ensm.2021.11.028 SN - 2405-8297 VL - 45 SP - 119 EP - 129 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-54882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Safarov, J. A1 - Tuma, Dirk A1 - Müller, K. T1 - Thermophysical properties of the paramagnetic ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate over an extended range of temperature and pressure N2 - The paramagnetic ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate [BMIM][FeCl4] was subject to multiple high-precision thermophysical property measurements under both ambient and high pressure. Density rho(p0,T) / kg m-3 and speed of sound u(p0,T) / m s-1 data at ambient pressure were recorded at temperatures T = (278.15 to 343.16) K using a DSA 5000 M combined vibrating tube densimeter and speed of sound analyser with a standard uncertainty of delta rho(p0,T) = ±0.001 kg m-3 and delta u(p0,T) = ±0.1 m s-1, respectively. High-pressure volumetric (p,rho,T) data were measured on an Anton Paar DMA HPM vibrating tube densimeter at T = (273.16 to 413.15) K and at pressures up to p = 140 MPa with an estimated experimental relative combined average percentage deviation (APD) of delta rho(p,T) / rho(p,T) = ±(0.01 to 0.08) %. The specific isobaric heat capacity cp(p0,T) / J kg-1 K-1, a caloric property, was determined at T = (273.15 to 413.15) K with an uncertainty delta cp / cp = ±0.5 % using a Perkin Elmer Pyris 1 DSC differential scanning calorimeter. To gain knowledge of transport properties, the dynamic viscosity eta(p0,T) / mPa s at ambient pressure was recorded at T = (275.03 to 413.18) K by an Anton Paar SVM 3000 Stabinger viscometer and additionally an Anton Paar rheometer MCR 302 device with uncertainties of delta eta / eta = ±0.35 % and delta eta / eta = ±1 %, respectively. The obtained data were first correlated by empirical polynomial equations of state and further processed by the application of classic thermodynamic potentials to determine isothermal compressibility kappa T(p,T) / MPa-1, isobaric thermal expansivity alpha p(p,T) / K-1, thermal pressure coefficient gamma(p,T) / MPa K-1, internal pressure pint(p,T) / MPa, specific heat capacity at constant pressure cp(p,T) / J kg-1 K-1 and at constant volume cv(p,T) / J kg-1 K-1, the difference of isobaric and isochoric heat capacity (cp–cv)(p,T) / J kg-1 K-1, speed of sound u(p,T) / m s-1 and ultimately isentropic exponent kappa s(p,T). This work extends knowledge about the thermophysical properties of [BMIM][FeCl4] particularly to high temperatures and pressures. KW - Ionic liquid KW - Volumetric properties KW - Transport properties KW - Caloric properties PY - 2022 U6 - https://doi.org/10.1016/j.molliq.2021.117939 SN - 0167-7322 VL - 346 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-54228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tuma, Dirk A1 - Moreau, A. A1 - Polishuk, I. A1 - Segovia, J. J. A1 - Vega-Maza, D. A1 - Martín, M. C. T1 - Measurements and predictions of densities and viscosities in CO2 + hydrocarbon mixtures at high pressures and temperatures: CO2 + n-pentane and CO2 + n-hexane blends N2 - This work reports new experimental data on densities and viscosities of (CO2 + n-pentane) and (CO2 + n-hexane) mixtures at high pressures and temperatures. The densities were measured by a vibrating-tube densimeter with an expanded uncertainty (k = 2) smaller than 1.8 kg/m3 at six isotherms (from 273.15 K to 373.15 K), twelve pressures starting at 5 MPa up to 100 MPa, and at six CO2 molar compositions (from 0 to 0.6). The viscosities were measured by a vibrating-wire viscometer with the corresponding relative expanded uncertainty (k = 2) smaller than 0.016 at five isotherms (from 273.15 K to 373.15 K), twelve pressures (from 5 MPa up to 100 MPa), and at two CO2 molar compositions (0.1 and 0.3). The densities were fitted by the semiempirical Tammann-Tait equation for density data and the Vogel-Fulcher-Tammann (VFT) equation for viscosity data, respectively. The Groupe Européen de Recherches Gazières (GERG-2008) equation of state was also applied for modelling the densities. Over-all robustness and reliability of the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and its critical point-based modification (CP-PC-SAFT) were examined. Accuracies of the Modified Yarranton-Satyro (MYS) coupled with CP-PC-SAFT and the NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP 10) in predicting the viscosities were evaluated. KW - CO2 + n-alkanes KW - thermophysical properties KW - Perturbed-Chain Statistical Association Fluid Theory PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555728 SN - 0167-7322 VL - 360 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-55572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -