TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Stawski, Tomasz A1 - Kulow, Anicó A1 - Cakir, Cafer Tufan A1 - Röder, Bettina A1 - Naese, Christoph A1 - Britzke, Ralf A1 - Sintschuk, Michael A1 - Emmerling, Franziska T1 - BAMline - A real-life sample materials research beamline JF - The Journal of Chemical Physics N2 - With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. The BAMline, a real-life sample materials research beamline, provides unique insights into materials’ electronic and chemical structure at different time and length scales. The beamline specializes in x-ray absorption spectroscopy, x-ray fluorescence spectroscopy, and tomography experiments. This enables real-time optimization of material properties and performance for various applications, such as energy transfer, energy storage, catalysis, and corrosion resistance. This paper gives an overview of the analytical methods and sample environments of the BAMline, which cover non-destructive testing experiments in materials science, chemistry, biology, medicine, and cultural heritage. We also present our own synthesis methods, processes, and equipment developed specifically for the BAMline, and we give examples of synthesized materials and their potential applications. Finally, this article discusses the future perspectives of the BAMline and its potential for further advances in sustainable materials research. KW - Extended X-ray absorption fine structure KW - Energy storage KW - Environmental impacts KW - Nondestructive testing techniques KW - X-ray fluorescence spectroscopy KW - Corrosion KW - Near edge X-ray absorption fine structure spectroscopy KW - X-ray absorption spectroscopy PY - 2023 DO - https://doi.org/10.1063/5.0157194 VL - 158 IS - 24 SP - 1 EP - 22 PB - AIP Publishing AN - OPUS4-57824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernardes, C. E. S. A1 - Feliciano, I.O. A1 - Naese, Christoph A1 - Emmerling, Franziska A1 - Minas da Piedade, M. T1 - Energetics of dehydroepiandrosterone polymorphs I and II from solution and drop-sublimation Calvet microcalorimetry measurements JF - The Journal of Chemical Thermodynamics N2 - The lattice enthalpies and monotropic relationship of two dehydroepiandrosterone (DEHA) polymorphs (forms I and II) were evaluated through a combination of differential scanning calorimetry (DSC), isothermal solution microcalorimetry, and drop-sublimation Calvet microcalorimetry experiments. The standard molar enthalpy of transition between both forms was determined as ΔtrsHom (II→I, 298.15 K) = - 0.90 ± 0.07 kJ mol-1 and ΔtrsHom (II→I, 417.8 K) = - 1.7 ± 1.0 kJ mol- 1, from measurements of standard molar enthalpies of solution in dimethyl sulfoxide and enthalpies of fusion, respectively. Drop-sublimation Calvet microcalorimetry experiments on form I led to ΔsubHom (cr I, 298.15 K) = 132.0±3.3 kJ mol - 1. This result, when combined with the more precise ΔtrsHom (II→I) value obtained by solution calorimetry, afforded ΔsubHom (cr II, 298.15 K) = 131.1±3.3 kJ mol - 1. The overall data indicate that on enthalpic grounds form I is more stable than form II from 298.15 K up to fusion. This conclusion, and the fact that DSC experiments indicated that form I has also a considerably higher temperature fusion, namely, Tfus(cr I)= 422.5±0.2 K and Tfus(cr II) = 413.1±0.2 K, suggest that the two polymorphs are monotropically related. KW - Calorimetry KW - Polymorphism KW - Enthalpy of solution KW - Enthalpy of sublimation KW - Thermochemistry KW - Lattice enthalpy PY - 2023 DO - https://doi.org/10.1016/j.jct.2023.107137 SN - 0021-9614 SN - 1096-3626 VL - 186 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-58418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -