TY - CONF A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Experimental and numerical characterization of hydrogen diffusion in thick-walled submerged arc welded joint of S420G2+M offshore steel grade T2 - Proceedings of the Fourth International Conference on Metals & Hydrogen N2 - Offshore wind turbines are an important goal in national energy strategies worldwide. Foundation structures are manufactured from submerged arc welded (SAW) plates with thicknesses up to 200 mm. In that connection, high-strength steels like the S420G2+M are more and more applied offering the possibility for increased stability and load-bearing capacity of the foundations. These offshore steel grades can show a susceptibility for delayed hydrogen assisted cold cracking of the weld joints. For that purpose, a minimum waiting time (MWT) of up to 48 h (dependent on applied standards) is recommended before non-destructive testing is allowed and conducted. But this concept is based on older steel grades that have been used for three or more decades. Nowadays, the metallurgical improvements (clean steels, proper rolling, and heat treatment) of base materials and well as welding consumables must be anticipated. Hence, the MWT concept should be critically discussed as it is assumed to be very conservative. For that reason, the focus of this study was to investigate the diffusion behavior in S420G2+M steel and its multi-layer SAW joint. Electrochemical permeation experiments were carried at room temperature. Boundary conditions were anticipated in terms of using different sample thicknesses. From the experimental data, hydrogen diffusion coefficients and absorbed diffusible hydrogen concentrations had been calculated. It was shown that hydrogen diffusion in the base material is increased compared to the weld metal. In addition, the sample thickness had a significant on the calculated diffusion coefficients. The minimum and maximum diffusion coefficients had been used for numerical modelling of the hydrogen diffusion in the welding joint. It became clear that a MWT must be always regarded together with a critical initial diffusible hydrogen concentration for the evaluation of a possible delayed cracking as diffusion times were mostly > 48 h due to the thick plates. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - Submerged arc welding KW - Diffusion KW - Minimum waiting time KW - Electrochemical permeation PY - 2022 SP - 1 EP - 11 CY - Ghent, Belgium AN - OPUS4-56075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P A1 - Nitsche, A T1 - Hydrogen effect on mechanical properties and cracking of creep‑resistant 9% Cr P92 steel and P91 weld metal JF - Welding in the World N2 - Martensitic 9% Cr steels like P91 and P92 can show an increased susceptibility to delayed hydrogen-assisted cracking. The focus of this study was the microstructure and heat treatment efect on the mechanical properties of P92 base material and P91 multi-layer weld metal in both as-welded and post weld heat treated (PWHT) condition. Tensile tests with hydrogen free reference samples and electrochemically hydrogen charged samples were carried out; the mechanical properties were assessed and supported by detailed fractographic analysis. Finally, a hydrogen and microstructure-dependent fracture criterion is established. All investigated microstructures showed a hydrogen-infuenced degradation of the mechanical properties compared to the hydrogen-free reference samples. The as-welded martensitic P91 weld metal had the highest degree of degradation in the presence of hydrogen. The P91 PWHT weld metal and the P92 base material had comparable properties. From that point of view, a signifcantly increased risk for hydrogen-assisted cold cracking during welding fabrication of P91 weld joints must be considered before any heat treatment is conducted. T2 - IIW Annual Assembly, Meeting of Commission IX-C CY - Tokyo, Japan DA - 16.07.2022 KW - Creep-resisting materials KW - Welding KW - Hydrogen assisted cracking KW - Hydrogen embrittlement KW - Mechanical properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564070 DO - https://doi.org/10.1007/s40194-022-01410-5 SN - 0043-2288 SP - 1 EP - 12 PB - Springer Nature CY - Basel (CH) AN - OPUS4-56407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Mente, Tobias A1 - Richter, Tim A1 - Kannengießer, Thomas T1 - Characterization of Hydrogen Diffusion in Offshore Steel S420G2+M Multi-layer Submerged Arc Welded Joint JF - Journal of Materials Engineering and Performance N2 - As onshore installation capacity is limited, the increase in the number of offshore wind turbines (OWT) is a major goal. In that connection, the OWTs continuously increase in size and weight and demand adequate foundations concepts like monopiles or tripods. These components are typically manufactured from welded mild steel plates with thickness up to 200 mm. The predominant welding technique is submerged arc welding (SAW). In accordance with the standards, the occurrence of hydrogen-assisted cracking is anticipated by either a minimum waiting time (MWT, before non-destructive testing of the welded joint is allowed) at ambient or a hydrogen removal heat treatment (HRHT) at elevated temperatures. The effectiveness of both can be estimated by calculation of the diffusion time, i.e., diffusion coefficients. In this study, these coefficients are obtained for the first time for a thick-walled S420G2+M offshore steel grade and its multi-layer SAW joint. The electrochemical permeation technique at ambient temperature is used for the determination of diffusion coefficients for both the base material and the weld metal. The coefficients are within a range of 1025 to 1024 mm2/s (whereas the weld metal had the lowest) and are used for an analytical and numerical calculation of the hydrogen diffusion and the related MWT. The results showed that long MWT can occur, which would be necessary to significantly decrease the hydrogen concentration. Weld metal diffusion coefficients at elevated temperatures were calculated from hydrogen desorption experiments by carrier gas hot extraction. They are within a range of 1023 mm2/s and used for the characterization of a HRHT dwell-time. The analytical calculation shows the same tendency of long necessary times also at elevated temperatures. That means the necessary time is strongly influenced by the considered plate thickness and the estimation of any MWT/HRHT via diffusion coefficients should be critically discussed. T2 - European Congress and Exhibition on Advanced Materials and Process - Euromat 2021 CY - Online meeting DA - 13.09.2021 KW - Thick-walled KW - Hydrogen diffusion KW - Offshore KW - Steel KW - Submerged arc welding PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544127 DO - https://doi.org/10.1007/s11665-022-06679-7 SN - 1059-9495 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-54412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P. A1 - Nitsche, A. T1 - Thickness and microstructure effect on hydrogen diffusion in creep‑resistant 9% Cr P92 steel and P91 weld metal JF - Welding in the World N2 - Martensitic 9% Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. Limited data on room temperature diffusion coefficients reported in literature vary widely by several orders of magnitude (mostly attributed to variation in microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. From the results obtained, diffusion coefficients were calculated using to different methods, time-lag, and inflection point. Results show that, despite microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. KW - Creep-resistant steel KW - Diffusion KW - Hydrogen assisted cracking KW - Welding KW - Electrochemical permeation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540645 DO - https://doi.org/10.1007/s40194-021-01218-9 SN - 0043-2288 SP - 1 EP - 16 PB - Springer Nature Switzerland AG AN - OPUS4-54064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Udomkichdecha, W. ED - Mononukul, A. ED - Böllinghaus, Thomas ED - Lexow, Jürgen T1 - Numerical investigations on hydrogen-assisted cracking (HAC) in duplex stainless steels T2 - Materials for energy infrastructure N2 - Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Therefore, a numerical model of a duplex stainless steel microstructure was developed enabling simulation of crack initiation and propagation in both phases. The phase specific stress strain analysis revealed that local plastic deformation occurs in both austenite and δ-ferrite already in the macroscopically elastic range. Altogether, phase specific hydrogen-assisted material damage was simulated for the first time taking into account all main factors influencing hydrogen assisted cracking process. The results agree well with experimental observations and thus allow a better insight in the mechanism of hydrogen-assisted material damage. T2 - 4th WMRIF Young scientists workshop CY - Boulder, CO, USA DA - 2014-09-08 KW - Hydrogen-assisted cracking (HAC) KW - Numerical simulation KW - FEM KW - Duplex stainless steel (DSS) KW - Mesoscale model PY - 2016 SN - 978-981-287-723-9 SN - 978-981-287-724-6 DO - https://doi.org/10.1007/978-981-287-724-6_3 SP - 21 EP - 31 PB - Springer AN - OPUS4-35075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Modeling of hydrogen-assisted cracking (HAC) in duplex stainless steels (DSS) N2 - Modeling of Hydrogen-Assisted Cracking (HAC) in Duplex Stainless Steels (DSS): - Hydrogen causes significant degradation in DSS and consequently HAC - Mechanisms of HAC have not been fully understood in two-phase microstructures - Mesoscale numerical modeling for HAC in DSS was created, coupled to the macroscale, enabling simulation of HAC in both phases independent from predefined crack paths T2 - International Hydrogen Conference - Material Performance in Hydrogen Environments CY - Jackson Lake Lodge, Moran, Wyoming, USA DA - 11.09.2016 KW - Hydrogen KW - Numerical modeling KW - Duplex stainless steel KW - Hydrogen assisted cracking PY - 2016 AN - OPUS4-37404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Schasse, R. A1 - Xu, Ping A1 - Mente, Tobias A1 - Kannengießer, Thomas ED - Olden, T.-M. ED - Muransky, O. ED - Edwards, L. T1 - Influence of weld repair by gouging on the residual stresses in high strength steels T2 - Residual Stresses 2016: ICRS-10 N2 - Carbon arc-air gouging is a common technology when repairing defects in welded structures. Often this technique is applied in repeated cycles even on the same location of the joint. Due to the multiple heat input by gouging and subsequent re-welding, the residual stresses are strongly influenced. This can become crucial when microstructure and mechanical properties are adversely affected by multiple weld reparations. Knowledge about the relation of gouging and residual stresses is scarce but important when high strength steels, which are sensitive to residual stresses, are processed. The present study shows the effect of repair welding on a high strength steel structural element. The weld and the heat affected zone were subjected to multiple thermal cycles by gouging and subsequent repair welding. The residual stresses were determined by X-ray diffraction at different positions along the joint. The results showed that the residual stress level has increased by the repair cycles. This is most pronounced for the heat affected zone. Adapted welding procedures may prevent detrimental residual stress distributions. T2 - ICRS 2016 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - Repair welding KW - Weld residual stress KW - Carbon arc-air gouging PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389242 SN - 978-1-94529117-6 SN - 978-1-94529117-3 DO - https://doi.org/10.21741/9781945291173-29 SN - 2474-395X VL - 2 SP - 169 EP - 174 PB - Materials Research Forum LLC CY - Millersville, PA, USA AN - OPUS4-38924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Münster, C. A1 - Mente, Tobias A1 - Rhode, Michael A1 - Böllinghaus, Thomas ED - Sommitsch, C. ED - Enzinger, N. ED - Mayr, P. T1 - Modelling of hydrogen diffusion in power station steels and influence of experimental conditions on the determination of diffusion coefficients T2 - Mathematical Modelling of Weld Phenomena 11 N2 - In the field of modelling hydrogen assisted cracking (HAC) phenomenon, hydrogen diffusivity is an important input parameter for numerical simulation. In terms of hydrogen diffusion coefficients, they have great impact on realistic assessment of the evolution of possible crack critical hydrogen concentrations. In addition, the chemical compositions of steels can have a strong effect on hydrogen diffusion. Unfortunately, literature provides a wide range of available hydrogen diffusion coefficients even for similar microstructures and equal temperatures. The scattering of the data can lead to significant deviations in the results of simulating the evolving hydrogen concentrations due to hydrogen uptake (by fabrication or service). Thus, the application of such data to crack-models or for component life tie predictions can be realized up to the present only by considering envelope curves of such value, corresponding to a work or bench case scenario, respectively. For improved reliability of numerical simulaitons, it is necessary to minimize the mentioned deviation of these data. Hence, this work focuses on the validation of hydrogen diffusion coefficients obtained from permeation experiments at room temperature. Two baintic steels with different alloying concepts were investigated, the creep-resistant 7CrMoVTiB10-10 and the reactor pressure vessel grade 20MnMoNi4-5. A numerical model is presented for simulation of the corresponding hydrogen diffusion during permeation experiments using the finite element software ANSYS. Three different diffusion coefficients (obtained from different common calculation methods) are considered and compared to numerical results. The vases of thes calculation methods are permeation transients which are a direct measure for hydrogen. The results of the simulated hydrogen diffusion coefficients show that only one procedure for calculation of diffusion coefficitnes is suitable in comparision to the experimental values. Thus, it is suggested to use this method for analysis of experimental results in case of hydrogen diffusion during permeation experiments. Furthermore, this work supplies validated values for the hydrogen diffusion coefficients of both steel grades. KW - Hydrogen KW - Diffusion Coefficient KW - Numerical Simulation KW - Permeation KW - Creep-resistant Steel KW - Pressure Vessel Steel PY - 2016 SN - 978-3-85125-490-7 SN - 2410-0544 SP - 435 EP - 457 PB - Technische Universität Graz CY - Graz AN - OPUS4-38917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Steppan, E. A1 - Kannengießer, Thomas A1 - Steger, J. T1 - Hydrogen trapping in T24 Cr-Mo-V steel weld joints - microstructure effect vs. experimental influence on activation energy for diffusion JF - Welding in the World N2 - Hydrogen-assisted cracking is a critical combination of local microstructure, mechanical load and hydrogen concentration. Welded microstructures of low-alloyed creep-resistant Cr-Mo-V steels show different hydrogen trapping kinetics. This influences the adsorbed hydrogen concentration as well as the diffusion by moderate or strong trapping. A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. Finally, realistic temperature assessment is mandatory for calculation of activation energy via TDA. KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Thermal desorption analysis KW - Welding KW - Microstructure KW - Diffusion PY - 2018 DO - https://doi.org/10.1007/s40194-017-0546-6 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 2 SP - 277 EP - 287 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Somerday, B. P. ED - Sofronis, P. T1 - Mesoscale Numerical Simulation of Hydrogen-Assisted Cracking in Duplex Stainless Steels T2 - Materials Performance in Hydrogen Environments (IHC2016) N2 - A two-dimensional numerical mesoscale model has been created representing a microstructure of a typical 2205/1.4462 duplex stainless steel to further elucidate the mechanisms of hydrogen-assisted crack initiation and propagation in multiphase non-hydride forming metallic microstructures. Hydrogen-assisted cracking (HAC) was simulated by considering different stress and strain behavior as well as different diffusion behavior in both phases. For simulation of crack initiation and propagation, the element elimination technique has been applied. The model allows the simulation of path-free crack propagation which contributes to a better understanding of the HAC process in two-phase microstructures. As a particular result, the analyses revealed that a global macroscopic elastic deformation might already cause plastic deformation in both phases entailing respective HAC. T2 - International Hydrogen Conference CY - Jakson Lake Lodge, Wyoming, USA DA - 11.09.2016 KW - Computer simulation KW - Cracking (Materials) KW - Fracture (Process) KW - Hydrogen KW - Stainless steel PY - 2017 SN - 978-0-7918-6138-7 DO - https://doi.org/10.1115/1.861387_ch67 SP - 589 EP - 596 PB - The American Society of Mechanical Engineers (ASME) CY - New York AN - OPUS4-45680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Böllinghaus, Thomas ED - Lippold, J. C. ED - Cross, C. E. T1 - Numerical investigations on hydrogen-assisted cracking in duplex stainless steel microstructures T2 - Cracking Phenomena in Welds IV N2 - Duplex stainless steels (DSS) are used in various industrial applications, e.g. in offshore constructions as well as in chemical industry. DSS reach higher strength than commercial austenitic stainless steels at still acceptable ductility. Additionally, they exhibit an improved corrosion resistance against pitting corrosion and corrosion cracking in harsh environments. Nevertheless, at specific conditions, as for instance arc welding, cathodic protection or exposure to sour service environments, such materials can take up hydrogen which may cause significant property degradation particularly in terms of ductility losses which, in turn, may entail hydrogen-assisted cracking (HAC). The cracking mechanism in DSS is different from steels having only a single phase, because hydrogen diffusion, stress-strain distribution and crack propagation are different in the austenite or ferrite phase. Therefore, the mechanism of HAC initiation and propagation as well as hydrogen trapping in DSS have not been fully clarified up to the present, as for most of the two-phase microstructures. At this point the numerical simulation can bridge the gap to a better insight in the cracking mechanism regarding the stress-strain distribution as well as hydrogen distribution between the phases, both austenite and ferrite, of the DSS. For that purpose, a two dimensional numerical mesoscale model was created representing the microstructure of the duplex stainless steel 1.4462, consisting of approximately equal portions of austenite and ferrite. Hydrogen assisted cracking was simulated considering stresses and strains as well as hydrogen concentration in both phases. Regarding the mechanical properties of austenite and ferrite different statements can be found in the literature, dependent on chemical composition and thermal treatment. Thus, various stress-strain curves were applied for austenite and ferrite simulating the HAC process in the DSS microstructure. By using the element elimination technique crack critical areas can be identified in both phases of the DSS regarding the local hydrogen concentration and the local mechanical load. The results clearly show different cracking behavior with varying mechanical properties of austenite and ferrite. Comparison of the results of the numerical simulation to those of experimental investigations on DSS will improve understanding of the HAC process in two phase microstructures. KW - duplex stainless steel 1.4462 (2205) KW - numerical simulation KW - hydrogen assisted cracking KW - diffusion PY - 2016 UR - http://link.springer.com/chapter/10.1007%2F978-3-319-28434-7_16 UR - http://www.springer.com/us/book/9783319284323 SN - 978-3-319-28432-3 SN - 978-3-319-28434-7 DO - https://doi.org/10.1007/978-3-319-28434-7_16 SP - Part V, 329 EP - 359 PB - Springer International Publishing CY - Switzerland ET - 1 AN - OPUS4-35591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Böllinghaus, Thomas A1 - Steppan, Enrico A1 - Mente, Tobias ED - Böllinghaus, Thomas ED - Lippold, J. C. ED - Cross, C. E. T1 - Hydrogen assisted cracking of a subsea-flowline T2 - Cracking Phenomena in Welds IV N2 - Since the mid-nineties, supermartensitic stainless steels (SMSS) have increasingly been applied to welded subsea-pipeline systems in the North Sea oil and gas fields, especially to flowlines at mild sour service conditions. However, in 2001 cracking and leaks occurred during installation and service start-up of two SMSS flowlines in the Norwegian Tune gas condensate field, welded with a new developed matching filler wire. Brittle transgranular cracking started especially at inter-run lack of fusion and propagated brittle, predominantly through the weld metal. The present paper provides a brief overview of the original failure case and respective sequence of events leading to complete replacement of the SMSS by carbon steel flowlines in 2002. Then, detailed investigations of a circumferential weld sample of the failed Tune flowline are highlighted, targeted at comparison of the failure appearance to previous investigations of this filler material type and to search for possible explanations for the brittle fracture at the crack initiation area. SEM investigations of the fracture surface revealed brittle areas only in the direction towards the top side of the weld while the major part of the investigated surface exhibited ductile fracture. As an approach to clarify, if the fracture was a consequence of hydrogen assisted cracking, five small sized specimens have been cut out of the original sample. Cracking has been introduced parallel to the original fracture surface in these specimens at respective saw cuts and bending. The results show that brittle transgranular cracking appeared only in the specimen cooled down to very low temperatures by liquid nitrogen and in the sample charged with hydrogen to an average concentration of about 15 ml/100 g. However, a fracture similar to the original surface was observed only in the hydrogenized specimen. As a further result, very similar fracture surfaces of supermartensitic stainless steel weld metals had been observed on specimens subjected to hydrogen assisted cold cracking (HACC) as well as to hydrogen assisted stress corrosion cracking (HASCC). In total, the results indicate that brittle fracture starting at the inter-run lack of fusion were not initiated by high notch tip deformation rates, but rather influenced by hydrogen, probably taken up during welding. KW - supermartensitic stainless steel KW - hydrogen assisted cracking KW - fracture topography PY - 2016 UR - http://link.springer.com/chapter/10.1007/978-3-319-28434-7_17 UR - http://www.springer.com/us/book/9783319284323 SN - 978-3-319-28432-3 SN - 978-3-319-28434-7 DO - https://doi.org/10.1007/978-3-319-28434-7_17 SP - Part V, 361 EP - 379 PB - Springer International Publishing CY - Switzerland ET - 1 AN - OPUS4-35592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Böllinghaus, Thomas A1 - Mente, Tobias A1 - Wongpanya, Pornwasa A1 - Viyanit, Ekkarut A1 - Steppan, Enrico ED - Böllinghaus, Thomas ED - Lippold, J. C. ED - Cross, C. E. T1 - Numerical modelling of hydrogen assisted cracking in steel welds T2 - Cracking phenomena in welds IV N2 - Hydrogen assisted stress corrosion and cold cracking represent still a major topic regarding the safety of welded steel components against failure in many industrial branches. Hydrogen might be introduced during fabrication welding or might be taken up from an environment during sour service or at cathodic protection. Additionally, understanding and avoidance of hydrogen entry into weld microstructures from gaseous pressurized environments becomes increasingly important for renewable energy components. There are two types of metallurgical mechanisms associated with hydrogen assisted cracking, i.e. the cracking as well as hydrogen transport and trapping mechanisms. For numerical modelling, it has to be considered that both types are not independent of each other, that the mechanisms are not yet completely clarified and that validation of such models strongly depends on implementation of the correct hydrogen related materials properties. However, quite significant achievements have been made in modelling of hydrogen assisted cracking by indirect coupling of thermal, stress-strain as well as hydrogen uptake and diffusion analyses. After a brief introduction into the subject and by revisiting various proposed cracking mechanisms, the present contribution focuses on recent developments of a numerical model based on a comparison of actual hydrogen concentrations and mechanical loads with respective hydrogen dependent material properties as crack initiation and propagation criteria. The basic procedure for numerical simulation of crack initiation and propagation is outlined and it is shown how such numerical simulations can be validated experimentally. Furthermore, it is highlighted how such a procedure has been extended to a comprehensive model for life time prediction of welded steel pipeline components and experimentally verified. Finally, it is outlined how the model can be extended to simulate cracking in heterogeneous steel microstructures on the different scales. KW - hydrogen assisted cracking KW - numerical simulation KW - supermartensitic stainless steel KW - high strength low alloyed structural steel KW - duplex stainless steel PY - 2016 UR - http://link.springer.com/chapter/10.1007%2F978-3-319-28434-7_18 UR - http://www.springer.com/us/book/9783319284323 SN - 978-3-319-28432-3 SN - 978-3-319-28434-7 DO - https://doi.org/10.1007/978-3-319-28434-7_18 SP - Part VI, 383 EP - 439 PB - Springer International Publishing CY - Switzerland ET - 1 AN - OPUS4-35593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mayr, P. A1 - Nitsche, A. A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Hydrogen diffusion in creep-resistant 9% Cr P91 multi-layer weld metal JF - Welding in the World N2 - Welded components of P91 9% Cr steel demand for careful welding fabrication with necessary post weld heat treatment (PWHT). Before the PWHT, a hydrogen removal heat treatment is necessary for avoidance of hydrogen assisted cracking (HAC). In this context, the microstructure and temperature-dependent hydrogen diffusion is important, and reliable diffusion coefficients of P91 weld metal are rare. For that reason, the diffusion behavior of P91 multi-layer weld metal was investigated for as-welded (AW) and PWHT condition by electrochemical permeation experiments at room temperature and carrier gas hot extraction (CGHE) from 100 to 400 °C. Hydrogen diffusion coefficients were calculated, and the corresponding hydrogen concentration was measured. It was ascertained that both heat treatment conditions show significant differences. At room temperature the AW condition showed significant hydrogen trapping expressed by to seven times lower diffusion coefficients. A preferred diffusion direction was found in perpendicular direction expressed by high permeability. The CGHE experiments revealed lower diffusion coefficients for the AW condition up to 400 °C. In this context, a hydrogen concentration of approximately 21 ml/100 g was still trapped at 100 °C. For that reason, a certain HAC susceptibility of as-welded P91 weld metal cannot be excluded, and hydrogen removal should be done before PWHT. KW - Creep resisting materials KW - Diffusion KW - Hydrogen KW - Weld metal KW - Post weld heat treatment KW - Microstructure PY - 2020 DO - https://doi.org/10.1007/s40194-019-00828-8 SN - 0043-2288 VL - 64 IS - 2 SP - 267 EP - 281 PB - Springer AN - OPUS4-50471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madigan, Maria A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Sommitsch, C. ED - Enzinger, N. ED - Mayr, P. T1 - Numerical Simulation of Hydrogen Assisted Stress Corrosion Cracking Originating from Pits T2 - Mathematical Modelling of Weld Phenomena 12 N2 - Supermartensitic stainless steels (SMSS) are a commonly used material nowadays for building offshore structures, i.e. pipelines in the oil and gas industry. The harsh and corrosive environments in oil and gas applications require the correct combination of alloys to attain the desired properties of steel, including high strength and good corrosion properties, even in severe sour service conditions. Welding is the most commonly used method in joining offshore components, depending on requirements requiring strength or fitting. It has been shown that the heat affected zone (HAZ) is more susceptible to certain types of corrosion, including pitting corrosion, especially during severe sour service where a high pH and lower H2S values in the flow medium can lead to pitting corrosion in the HAZ of welded structures. Subsequent hydrogen uptake in the pits can cause cracks to initiate and propagate, leading to rupture of pipelines or catastrophic failures of structures, even at low mechanical loads. Offshore standards allow a certain amount of corrosion, including pitting, to be present before action is required, however the extent of pitting corrosion is not identified by performing visual inspection alone as the subsurface pit diameter may be vastly greater than the pit diameter at the surface. The critical conditions which lead to crack initiation and propagation from a pit with hydrogen uptake are currently not known. Therefore, pitting corrosion and subsequent crack initiation are a danger to the safety of structures. The interest in this phenomenon has resulted in many experimental studies and numerical simulations. Several numerical models of pitting corrosion and hydrogen uptake resulting in crack initiation are already in existence, but these two phenomena are regularly modelled individually. Thus, a model enabling simulation of both phenomena simultaneously would be of great benefit. Hence, the goal of this study is to develop a model enabling simulation of pit growth and crack initiation, considering hydrogen uptake in the pit from a corrosive environment. As a first step, this paper presents an investigation into various parameters, which influence crack initiation at pits. These crack critical parameters include: pit geometry, pit location, mechanical load and hydrogen transport into the microstructure. The results will help to identify critical conditions for crack initiation starting at the pit and developing measures to avoid hydrogen assisted cracking (HAC). T2 - 12th International Seminar Numerical Analysis of Weldability CY - Graz, Austria DA - 23.09.2018 KW - Hydrogen Assisted Cracking (HAC) KW - Pitting KW - Supermartensitic Stainless Steel (SMSS) KW - Numerical Simulation PY - 2019 SN - 978-3-85125-615-4 SN - 978-3-85125-616-1 SN - 2410-0544 VL - 12 SP - 443 EP - 464 PB - Verlag der Technischen Universität Graz CY - Graz (Österreich) AN - OPUS4-48721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilhelm, Eugen A1 - Mente, Tobias A1 - Rhode, Michael T1 - Waiting time before NDT of welded offshore steel grades under consideration of delayed hydrogen-assisted cracking JF - Welding in the World N2 - Offshore wind turbines (OWT) are a major goal of the energy strategy of Germany encompassing the increase of the installed wind power. OWT components are manufactured from welded steel plates with thicknesses up to 200 mm. The underlying standards and technical recommendations for construction of OWTs encompass specifications of so-called minimum waiting time (MWT) before non-destructive testing of the weld joints is allowed. Reason is the increased risk of time-delayed hydrogen assisted cold cracking as hydrogen diffusion is very slow due to the very thick plates. The strict consideration of those long MWT up to 48 h during the construction of OWTs leads to significant financial burden (like disproportionately high costs for installer ships as well as storage problems (onshore)). In this study, weld joints made of S355 ML were examined in comparison with the offshore steel grade S460 G2+M. The aim was to optimize, i.e., reduce, the MWT before NDT considering varied heat input, hydrogen concentration and using self-restraint weld tests. This would significantly reduce the manufacturing time and costs of OWT construction. To quantify the necessary delay time until hydrogen-assisted cold cracks appear, acoustic emission analysis was applied directly after welding for at least 48 h. KW - Hydrogen KW - Welding KW - Cracking KW - Offshore KW - Steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524959 DO - https://doi.org/10.1007/s40194-020-01060-5 SN - 0043-2288 VL - 65 SP - 947 EP - 959 PB - Springer Nature AN - OPUS4-52495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rhode, Michael A1 - Münster, C. A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Somerday, B.P. ED - Sofronis, P. T1 - Influence of experimental conditions and calculation method on hydrogen diffusion coefficient evaluation at elevated temperatures T2 - International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments N2 - Literature provides a wide range of hydrogen diffusion coefficients for low alloyed steels used in power plants. In fact, experimental boundary conditions and calculation methods have influence on the determination of these coefficients. The diffusion and trapping behavior in creep-resistant steel 7CrMoVTiB10-10 has been studied. Based on experimental carrier gas hot extraction (CGHE) data, a numerical model has been developed to describe the hydrogen transport and respective hydrogen distribution at elevated temperatures. The numerical results suggest that common calculation methods for diffusion coefficients are limited for experimental data analysis. The sample preparation time before CGHE experiment influences the determined diffusion coefficients with the consequence that non-homogeneous hydrogen concentration profiles have to be considered in the simulations. KW - Temperature effect KW - Hydrogen diffusion KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Carrier gas hot extraction PY - 2017 SN - 978-0-7918-6138-7 DO - https://doi.org/10.1115/1.861387_ch56 SP - 495 EP - 503 PB - ASME CY - New York, USA ET - 1 AN - OPUS4-42502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Schaupp, Thomas A1 - Münster, C. A1 - Mente, Tobias A1 - Kannengießer, Thomas A1 - Böllinghaus, Thomas T1 - Hydrogen determination in welded specimens by carrier gas hot extraction - a review on the main parameters and their effects on hydrogen measurement JF - Welding in the World N2 - Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in weld joints using a thermal conductivity detector (TCD) for hydrogen measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries (ISO 3690 type B and small cylindrical samples), and factors that additionally influence hydrogen determination. They are namely specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PI-furnace controller, as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up to the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by Evaluation of the recorded data. Generally, independent temperature measurement with dummy specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA). KW - Hydrogen KW - Carrier gas hot extraction KW - Experimental design KW - Thermal conductivity device PY - 2019 DO - https://doi.org/10.1007/s40194-018-0664-9 SN - 0043-2288 VL - 63 IS - 2 SP - 511 EP - 526 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-47603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengiesser, Thomas T1 - Parameters and challenges for reliable hydrogen determination in welded joints by carrier gas hot extraction JF - The Paton Welding Journal N2 - For the hydrogen-based energy economy of tomorrow, the construction of the necessary infrastructure will play a central role. Most materials used to date, such as welded steels, can be prone to hydrogen embrittlement under certain conditions. This includes the classic delayed cold cracking during welding as well as degradation phenomena during service of components in hydrogen-containing environment. For the evaluation of any hydrogen effect, for example, on the mechanical properties of a welded metallic material, the hydrogen content must be precisely determined. In the case of weld seams, the carrier gas hot extraction (CGHE) according to ISO 3690 is meanwhile state-of-the-art. CGHE is based on accelerated hydrogen degassing due to the thermal activation of hydrogen at elevated temperatures. In addition to the quantification of hydrogen, thermal desorption analysis (TDA) with varying heating rates can be used to determine and evaluate the hydrogen trapping at microstructural defects in the material. For both techniques, experimental and metrological influences must be considered, which have a major effect on the result. For example, ISO 3690 suggests different sample geometries and minimum extraction times for CGHE. This study summarizes the results and experiences of numerous investigations at the Federal Institute for Materials Research and Testing (BAM) with different sample temperatures and geometries (ISO 3690 type B and cylindrical TDA samples) regarding the influence of the sample surface (polished/welded), measurement accuracy depending on the sample volume and the insufficient monitoring of the effect of PI control on the extraction temperature. A deviating extraction temperature from the target temperature can significantly falsify the measurement results. Based on the results, methods are shown which allow the desired extraction temperature to be reached quickly without physically interfering with the measuring equipment. This serves to significantly improve the reliability of the hydrogen measurement through increased signal stability and accelerated hydrogen desorption. In general, an independent temperature measurement with dummy samples is recommended for the heating procedure of choice to exclude possible undesired temperature influences before the measurement. The methods described can be transferred directly to industrial applications KW - Welding KW - Hydrogen measurement KW - ISO 3690 KW - Carrier gas hot extraction PY - 2024 DO - https://doi.org/10.37434/tpwj2024.04.01 SN - 0957-798X VL - 4 SP - 3 EP - 10 PB - International Association Welding AN - OPUS4-60071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jamro, R. A1 - Mente, Tobias A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Al-Falahat, Ala'A. M. A1 - Woracek, R. A1 - Manke, I. A1 - Griesche, Axel T1 - Temperature distribution during welding measured by neutron imaging JF - Journal of Physics: Conference Series N2 - This study was carried out to investigate the neutron transmission signal as a function of sample temperature during a welding process. A theoretical description that includes the Debye-Waller factor was used to describe the temperature influence on the neutron crosssections. Neutron imaging using a monochromatic beam helps to observe transmission variations related to the material temperature. In-situ neutron imaging of welding experiments show the distribution of the temperature in bulk steel samples. The performed finite element modelling of expected temperature distributions shows good agreement with the obtained experimental data. KW - Neutron imaging KW - Debye-Waller-Faktor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586268 DO - https://doi.org/10.1088/1742-6596/2605/1/012026 VL - 2605 SP - 1 EP - 10 PB - IOP Publishing Ltd. AN - OPUS4-58626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Mente, Tobias A1 - Markötter, Henning A1 - Al-Falahat, M. A1 - Kardjilov, N. T1 - Neutron Bragg edge imaging for in situ mapping of crystallographic phase-transformations and of temperature distributions during GTAW of supermartensitic stainless steel N2 - In Neutron-Bragg-Edge Imaging (NBEI) experiments, we studied the phase transition during butt-welding of supermartensitic steel plates. Gas tungsten arc welding (GTAW) was used with a motorized torch allowing for automated weldments. The austenitization in the heat affected zone (HAZ) underneath the welding head could be clearly visualized at λ = 0.39 nm, a wavelength smaller than the Bragg edge wavelengths of both austenite and martensite. Also, the re-transformation into the martensitic phase upon cooling was detected. However, we observed an unexpected additional change in transmission at λ = 0.44 nm that is a wavelength larger than the wavelength of the Bragg edges of both the martensitic and austenitic phases. We attribute this change to the Deybe-Waller-Factor that describes the temperature dependence of coherent scattering at a crystal lattice. The observed two-dimensional attenuation map corresponds well with a temperature distribution modelling by software macros in ANSYS. Here, the absolute temperature values could be achieved by calibrating the modelled attenuation with help of a thermocouple placed at the steel plate. This allows in return for a direct two-dimensional temperature reading based on the Debye-Waller-relation between neutron attenuation and sample temperature. T2 - ITMNR-9 CY - Buenos Aires, Argentina DA - 12.10.2022 KW - Debye-Waller-Faktor PY - 2023 AN - OPUS4-58627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Mente, Tobias A1 - Michael, Thomas T1 - Local mechanical properties of dissimilar metal TIG welded joints of CoCrFeMnNi high entropy alloy and AISI 304 austenitic steel JF - Welding in the World N2 - Multiple principal element alloys encompass the well-known high entropy alloys (HEA). The alloy system represents a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.%. Thus, this alloying concept differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. However, in the last 20 years, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on processing issues such as joining and welding processes. The weldability of HEAs has received very little attention so far. The experience with dissimilar metal welds is completely lacking but is essential for the application of these materials in combination with conventional materials. The present study presents comprehensive experimental results on the weldability of an equimolar CoCrFeMnNi-HEA in cold-rolled and heat-treated condition, which was joined by tungsten inert gas welding to an austenitic steel AISI 304. The mechanical properties of the dissimilar metal welds were characterized by cross-weld tensile samples, whereas the local deformation in the weld of the different welding zones was measured by digital image correlation. In accordance with the respective initial HEA condition (cold-rolled vs. heat-treated), the local strain behavior was divergent and influenced the global mechanical properties of both DMW types. Nonetheless, the experiments provided proof in principle of the weldability for dissimilar joints of the CoCrFeMnNi-HEA welded to conventional materials like austenitic stainless steels ensuring a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. KW - TIG welding KW - High-entropy alloys KW - Mechanical properties KW - Dissimilar metal weld PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595775 DO - https://doi.org/10.1007/s40194-024-01718-4 SN - 0043-2288 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-59577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Brackrock, Daniel A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Component test for the assessment of delayed hydrogen-assisted cracking in thick-walled SAW joints for offshore applications JF - Welding in the World N2 - Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods, or jackets. These components are typically constructed using submerged arc welding (SAW) with high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen-assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicates the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam/layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled with over 20 passes and a seam length of 1000 mm. Additional welded stiffeners simulated the effect of a high restraint, to achieve critical HAC conditions. The necessity of a minimum waiting time (MWT) before the NDT can be conducted (to exclude HAC) was critically verified by the application of ultrasonic testing of the welded joint at different time-steps of the NDT of up to 48 h after the completion welding. The residual stresses were determined by a robot XRD goniometer. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modeling allowed the qualitative estimation of the hydrogen diffusion in the weld. No noticeable HAC occurrence was identified and confirms the high cracking resistance of the investigated material. Finally, the applicability of the MWT concept should be critically discussed. KW - Hydrogen KW - Cold cracking KW - Minimum Waiting Time KW - Offshore steel grade KW - Component test PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591981 DO - https://doi.org/10.1007/s40194-023-01658-5 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-59198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -