TY - JOUR A1 - Zhang, G. A1 - Österle, Werner A1 - Jim, B. A1 - Häusler, Ines A1 - Hesse, Rene A1 - Wetzel, B. T1 - The role of surface topography in the evolving microstructure and functionality of tribofilms of an epoxy-based nanocomposite JF - Wear N2 - The topographic effect of steel counterface, finished by mechanical grinding with Ra ranging from 0.01 to 0.95 µm, on the structure and functionality of the tribofilm of a hybrid nanocomposite, i.e. epoxy matrix filled with monodisperse silica nanoparticles, carbon fibers and graphite, was systematically investigated. The nanostructure of the tribofilm was comprehensively characterized by using combined focused ion beam and transmission electron microscope analyses. It was identified that oxidation of the steel surface, release, compaction and tribosintering of silica nanoparticles and deposition of an epoxy-like degradation product as well as fragmentation of carbon fibers are main mechanisms determining the structure and functionality of the tribofilm. The size of roughness grooves determines the type and size class of wear particles to be trapped at the surface. An optimum groove size leading to a maximum of surface coverage with a nanostructured tribofilm formed mainly from released silica nanoparticles was identified. KW - hybrid nanocomposite KW - tribological performance KW - topographic effect KW - tribofilm KW - nanostructure PY - 2016 DO - https://doi.org/10.1016/j.wear.2016.06.012 VL - 364-365 SP - 48 EP - 56 PB - Elsevier B.V. AN - OPUS4-37937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lemiasheuski, Anton A1 - Bajer, Evgenia A1 - Oder, Gabriele A1 - Göbel, Artur A1 - Hesse, Rene A1 - Bettge, Dirk T1 - Development of an Automated 3D Metallography System (RASI) and its Application in Microstructure Analysis N2 - Many microstructural features exhibit non-trivial geometries, which can only be derived to a limited extent from two-dimensional images. E.g., graphite arrangements in lamellar gray cast iron have complex geometries, and the same is true for additively manufactured materials and three-dimensional conductive path structures. Some can be visualized using tomographic methods, but some cannot be due to weak contrast and/or lack of resolution when analyzing macroscopic objects. Classic metallography can help but must be expanded to the third dimension. The method of reconstructing three-dimensional structures from serial metallographic sections surely is not new. However, the effort required to manually assemble many individual sections into image stacks is very high and stands in the way of frequent application. For this reason, an automated, robot-supported 3D metallography system is being developed at BAM, which carries out the steps of repeated preparation and image acquisition on polished specimen. Preparation includes grinding, polishing and optionally etching of the polished surface. Image acquisition comprises autofocused light microscopic imaging at several magnification levels. The image stacks obtained are then pre-processed, segmented, and converted into 3D models, which in the result appear like microtomographic models, but with high resolution at large volume. Contrasting by classical chemical etching reveals structures that cannot be resolved using tomographic methods. The integration of further imaging and measuring methods into this system is underway. Some examples will be discussed in the presentation. T2 - Euromat 2023 CY - Frankfurt a. M., Germany DA - 04.07.2023 KW - Metallography KW - 3D Reconstruction KW - Roboter KW - Automation KW - Microstructure PY - 2023 AN - OPUS4-58202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -