TY - GEN A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: A test artifact for direct laser writing T2 - Preprints N2 - With Direct Laser Writing (DLW) maturing in all aspects as a manufacturing technology a toolset for quality assurance must be developed. In this work we want to introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric feature to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. Selective Laser Melting. The test artifact introduced in this work was developed in particular to accommodate 1) the high geometrical resolution of DLW structures and 2) the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our DLW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresist, laser power and scanning speed and to analyse the geometric accuracy of a structure produced using these guidelines. KW - Multi photon lithography KW - Test artifact KW - Two photon polymerization KW - Direct Laser Writing KW - Quality infrastructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560530 DO - https://doi.org/10.20944/preprints202210.0259.v1 SP - 1 EP - 29 PB - MDPI CY - Basel AN - OPUS4-56053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Topolniak, Ievgenia A1 - Weise, Matthias A1 - Sturm, Heinz T1 - Shape deviations of DLW microstructures in dependency of fabrication parameters JF - Journal of Micromechanics and Microengineering N2 - Deep understanding of the effects associated with fabrication parameters and their influence on the resulting structures shape is essential for the further development of direct laser writing (DLW). In particular, it is critical for development of reference materials, where structure parameters are precisely fabricated and should be reproduced with use of DLW technology. In this study we investigated the effect of various fabrication and preparation parameters on the structural precision of interest for reference materials. A well-studied photo-curable system, SZ2080 negative photo-resist with 1 wt.% Michler's ketone (Bis) photo-initiator, was investigated in this work. The correlation between applied laser power, laser velocity, fabrication direction on the deviations in the structure shape were observed by means of white light interferometry microscopy. Moreover, influence of slicing and hatching distances as well as prebake time were studied as function of sample shape. Deviations in the structure form between the theoretically expected and the one detected after DLW fabrication were observed in the range up to 15%. The observed shape discrepancies show the essential importance of fine-tuning the fabrication parameter for reference structure production. KW - Direct laser writing KW - Fabrication parameters KW - Structural precision KW - SZ2080 negative photo-resist KW - White light interferometry microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535906 DO - https://doi.org/10.1088/1361-6439/ac2a14 VL - 31 IS - 12 SP - 1 EP - 8 PB - IOP Science AN - OPUS4-53590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Jaenisch, Gerd-Rüdiger A1 - Pavasaryte, Lina A1 - Funk, Alexander T1 - XCT and DLW: Synergies of Two Techniques at Sub-Micrometer Resolution JF - Applied Science N2 - Direct Laser Writing (DLW) and X-ray computed tomography (XCT) both offer unique possibilities in their respective fields. DLW produces full three-dimensional (3D) polymer structures on the microscale with resolutions below 100 nm. The fabricated structures can be analysed by XCT or X-ray microscopy (XRM), which incorporates additional X-ray lenses, in three dimensions down to a minimal basic spatial resolution of about 500 nm or 50 nm, respectively. In this work, two different DLW structures are analysed via XCT. Internal defects are detected and analysed for the purpose of quality control. Defects and structures with sizes down to 1.5 µm are successfully analysed. A 3D reconstruction and internal, hidden features of the fabricated structures are shown and discussed. In a first-of-its-kind study, we demonstrate the detectability of a single-voxel line inside a fabricated structure that would not be detectable with SEM or light microscopy. Furthermore, the direct fabrication on a PET substrate is shown to overcome the high X-ray absorbance of commonly used glass substrates. Attenuation spectra of SZ2080 and glass substrates are compared to a fabrication route direct on a 170 µm PET foil. The practical aspects of XCT measurements for DLW structures on different substrates will be discussed. KW - Non-destructive testing KW - Two-photon polymerization KW - X-ray microscopy KW - XCT KW - 2PP KW - Direct laser writing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560525 DO - https://doi.org/10.3390/app122010488 VL - 12 IS - 20 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-56052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: a test artifact for direct laser writing JF - Measurement Science and Technology N2 - With femtosecond-laser direct writing (fs-LDW) maturing in all aspects as a manufacturing technology, a toolset for quality assurance must be developed. In this work we introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric features to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. selective laser melting. The test artifact introduced in this work was developed in particular to accommodate the high geometrical resolution of fs-LDW structures and the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal Raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our fs-LDW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresists, laser power and scanning speed and to analyze the geometric accuracy of a structure produced using these guidelines. The shown test artifact is publicly available as STL file on GitHub (https://github.com/BAMresearch/2PP-TestArtifact) and in the supplement. KW - Laser direct writing KW - Multi photon lithography KW - Reference material KW - Raman spectroscopy KW - Confocal raman imaging KW - Slicers KW - Open data on zenodo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580951 DO - https://doi.org/10.1088/1361-6501/acc47a VL - 34 IS - 7 SP - 1 EP - 14 PB - IOP Science AN - OPUS4-58095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - Test artifact for fs-LDW N2 - Data to generate the given graphs in the publication as well as raw images of the shown images. KW - stl code KW - Images KW - Graphs KW - Data PY - 2023 DO - https://doi.org/10.5281/zenodo.7671945 PB - Zenodo CY - Geneva AN - OPUS4-58096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -