TY - JOUR A1 - Czarnecki, Sebastian A1 - Bertin, Annabelle T1 - Hybrid silicon-based organic/inorganic block copolymers with sol-gel active moieties: Synthetic advances, self-assembly and applications in biomedicine and material science JF - Chemistry - A European Journal N2 - Abstract: Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol–gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in bio-medicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, pho- tonic crystals or coatings/films with antibiofouling, antibac- terial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. KW - Organic/inorganic block copolymer KW - Robust nano objects KW - Self-assembly KW - Synthesis KW - Biomedical application KW - Material science PY - 2018 DO - https://doi.org/10.1002/chem.201705286 SN - 1521-3765 SN - 0947-6539 VL - 24 IS - 14 SP - 3354 EP - 3373 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-43953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Czarnecki, Sebastian A1 - Hackelbusch, Sebastian A1 - Bertin, Annabelle T1 - Synthesis of hybrid inorganic/organic homopolymers via ATRP and RAFT: A practical comparison N2 - The synthesis of hybrid inorganic/organic copolymers, using reversible deactivation radical polymerization (RDRP) techniques, has been an intensively studied research topic over recent years. A plethora of hybrid inorganic/organic copolymers were synthesized, including hybrid inorganic/organic block copolymers as well as random copolymers,[1–4] that showed great potential in fabricating hybrid (nano)materials with tailored properties [5]. Two widely employed RDRP techniques to prepare such hybrid inorganic/organic copolymers are atom transfer radical polymerization (ATRP) [1,2] and reversible addition-fragmentation chain transfer (RAFT) polymerization [3,4]. In order, to afford hybrid inorganic/organic copolymers with narrow dispersity, high conversions and precise structures, it is required to choose proper reaction conditions. Due to the importance of both ATRP and RAFT in the preparation of such hybrid polymers, we aim to compare both RDRP techniques by preparing 2-acetoxyethyl methacrylate (AcEMA) and 3-(triethoxysilyl)propyl methacrylate (TESPMA) based homopolymers. For this purpose, AcEMA and TESPMA were polymerized in 1,4-dioxane at 60 °C mediated by CuBr/N,N,N',N'-pentamethyldiethylenetriamine (PMDETA) and 2-(2-carboxylethylsulfanylthiocarbonyl-sufanyl) propionic acid (TTC) as well as cumyl dithiobenzoate (CDB) to evaluate the suitability and reliability of ATRP and RAFT to prepare such hybrid (co)polymers. T2 - Berlin Chemie Symposium 2017 CY - TU Berlin, Berlin, Germany DA - 06.04.2017 KW - Hybrid inorganic/organic copolymers KW - ATRP KW - RAFT PY - 2017 UR - https://bcs.jcf-berlin.de/BCS2017/BoA2017.pdf AN - OPUS4-40280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -