TY - CONF A1 - Altmann, Korinna A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Braun, U. T1 - Requirements for inter-lab comparison studies and cooperation with CUSP and JRC N2 - Results from different methods applied to micro- and nanoplastics (MNPs) analysis show that there are large gaps in harmonisation with respect to terminology, size classes, sample preparation protocols and, finally, to the comparability of the measurands and descriptors. Within the European research cluster to understand the health impacts of micro- and nanoplastics (CUSP) working group WG3-Inter-Laboratory Comparisons an overview of the existing detection methods revealing advantages and disadvantages regarding the analytical tasks is being compiled. There is a clear need to develop high class characterized reference materials for MNPs in the size ranges of 100-10 µm and smaller than 10 µm, so that these can be used to validate methods and to make results comparable. Inter-laboratory comparisons (ILCs) on model samples with complex matrices regarding mass, or water samples for number-based methods, will help us to advance the process of harmonization as well as to train users early in process of developing new methods. We plan to keep all five CUSP projects well-connected also with the 'outside' MNP projects and ILCs and to extract the optimum of needs, capabilities, and efforts in order to launch new VAMAS ILCs which should expand already available ones. T2 - CUSP Meeting and General Assembly of PlasticsFatE CY - Online meeting DA - 13.12.2021 KW - CUSP KW - Microplastic KW - Inter-lab comparison KW - VAMAS KW - Reference materials PY - 2021 UR - https://cusp-research.eu/about/ AN - OPUS4-54036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, A. A1 - Anis, B. A1 - Szymoniak, Paulina A1 - Altmann, Korinna A1 - Schönhals, Andreas T1 - Graphene Oxide/Polyvinyl Alcohol–Formaldehyde Composite Loaded by Pb Ions: Structure and Electrochemical Performance JF - Polymers N2 - An immobilization of graphene oxide (GO) into a matrix of polyvinyl formaldehyde (PVF) foam as an eco-friendly, low cost, superior, and easily recovered sorbent of Pb ions from an aqueous solution is described. The relationships between the structure and electrochemical properties of PVF/GO composite with implanted Pb ions are discussed for the first time. The number of alcohol groups decreased by 41% and 63% for PVF/GO and the PVF/GO/Pb composite, respectively, compared to pure PVF. This means that chemical bonds are formed between the Pb ions and the PVF/GO composite based on the OH groups. This bond formation causes an increase in the Tg values attributed to the formation of a strong surface complexation between adjacent layers of PVF/GO composite. The conductivity increases by about 2.8 orders of magnitude compared to the values of the PVF/GO/Pb composite compared to the PVF. This means the presence of Pb ions is the main factor for enhancing the conductivity where the conduction mechanism is changed from ionic for PVF to electronic conduction for PVF/GO and PVF/GO/Pb. KW - Graphene oxide KW - Polyvinyl formaldehyde KW - Lead ions KW - Conductivity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549588 DO - https://doi.org/10.3390/polym14112303 SN - 2073-4360 VL - 14 IS - 11 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-54958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Milczewski, Frank A1 - Ciornii, Dmitri A1 - Hodoroaba, Dan T1 - Preliminary results of an interlaboratory comparison on microplastics organised by plasticsfate N2 - Microplastics are everywhere in the environment, but analytics is challenging. Since harmonisation is missing as well es suitable reference materials, BAM did under th umbrella of VAMAS funded by the EU Horizon 2020 project PlasticsFate a ILC for microplastic detection methods. Methods adressed were IR, Raman, Py-GC/MS and TED-GC/MS. The talk gives a first presentation and evaluation on the results. T2 - CUSP annual meeting and conference CY - Utrecht, Netherlands DA - 12.09.2023 KW - Microplastics KW - TED-GC/MS KW - Polymer 3R KW - Reference material KW - ILC on detection methods PY - 2023 AN - OPUS4-60036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan T1 - Validation of microplastics detection methods and proficiency testing: Suitable microplastic reference materials for interlaboratory comparison N2 - The talk summarizes challenges in microplastic analysis. It shows the preparation of microplastic reference materials as well as the testing on homogeneity and stability. The reference material is used in an international laboratory comparison to compare different detection methods used for microplastic analysis. The methods used were µ-IR (FTIR+LDIR) for number-based methods and TED-GC/MS and Py-GC/MS for mass-based methods. The ILC was done under the umbrella of VAMAS TWA 45. Results of the participants are presented. T2 - BAM Akademie CY - Online meeting DA - 16.05.2024 KW - Microplastics KW - Reference materials KW - ILC KW - Microplastics detection KW - TED-GC/MS KW - Polymer 3R PY - 2024 AN - OPUS4-60085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Božičević, Lucija A1 - Altmann, Korinna A1 - Hildebrandt, Jana A1 - Knigge, Xenia A1 - Vrček, Valerije A1 - Peranić, Nikolina A1 - Kalcec, Nikolina A1 - Vinkovic Vrcek, Ivana T1 - Estrogenic activity of plastic nanoparticles mixture under in vitro settings JF - Environmental Science: Nano N2 - The plastic value chain, central part of modern living, caused environmental pollution and bioaccumulation of plastic nanoparticles (PNPs). Their ubiquitous presence in different environmental and biological compartments has become a serious threat to human health and ecosystems. Frequently used plastic materials such as polypropylene (PP), polystyrene (PS) and polyethylene (PE) have been detected in the form of PNPs in the food chain, soil, water and air, as well as in human feces and blood. In this study, we aimed to provide novel insights in endocrine disrupting properties of PNPs using in vitro estrogen receptor (ER) transactivation assay. The effects of PP-NPs, PE-NPs and PS-NPs and their mixture on T47D-KBluc cell line stably transfected with luciferase as reporter enzyme was evaluated by means of cytotoxicity, cellular uptake and ER activation. Tested dose range for PNPs was 0.001 – 10 mg/L. Both cellular uptake and cytotoxicity for all PNPs was found to be dose-dependent. Only the highest dose of PP-NPs and PE-NPs induced apoptosis and cell death, while PS-NPs were not cytotoxic in tested dose range. For tested concentrations, PP-NPs and PE-NPs showed significant agonistic activity on ER, while PS-NPs cannot be considered ER active. When, applied as mixture, PNP demonstrated additive toxicity effects compared to the effect of each individual PNPs. Additivity was also observed for ER agonistic effect of PNPs mixture according to the benchmark dose-addition modelling approach. This study provides missing science-based evidence on endocrine disrupting effects of PE-NPs, PP-NPs, PS-NPs and their mixtures and highlights the importance of considering unintentional, aggregate and combined exposure to different PNPs in risk management. KW - Risk assessment KW - Nanoplastics KW - Estrogenic activity of plastic nanoparticles PY - 2024 DO - https://doi.org/10.1039/D3EN00883E SN - 2051-8153 VL - 11 IS - 5 SP - 2112 EP - 2126 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Hoffmann, Thomas A1 - Range, David A1 - Altmann, Korinna T1 - Microplastics in sediments of the river Rhine—A workflow for preparation and analysis of sediment samples from aquatic river systems for monitoring purposes JF - Applied Research N2 - AbstractMicroplastics (MP) can be detected in all environmental systems. Marine and terrestrial aquatic systems, especially the transported suspended solids, have often been the focus of scientific investigations in the past. Sediments of aquatic river systems, on the other hand, were often ignored due to the time‐consuming sample preparation and analysis procedures. Spectroscopic measurement methods counting particle numbers are hardly suitable as detection methods, because there are plenty of natural particles next to a small number of MP particles. Integral methods, such as thermoanalytical methods are determining the particle mass independently of the inorganic components.In this study, a workflow for sample preparation via density separation and subsequent analysis by thermal extraction desorption‐gas chromatography/mass spectrometry is presented, which leads to representative and homogeneous samples and allows fast and robust MP mass content measurements suitable for routine analysis. Polymers were identified and quantified in all samples. Polyethylene and styrene‐butadiene rubber are the dominant polymers, besides polypropylene and polystyrene. Overall, total polymer masses between 1.18 and 337.0 µg/g could be determined. Highest MP concentrations in riverbed sediment are found in sites characterized by low flow velocities in harbors and reservoirs, while MP concentrations in sandy/gravelly bed sediments with higher flow velocities are small. KW - Microplastics KW - Density separation KW - TED-GC/MS KW - NaI PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597335 DO - https://doi.org/10.1002/appl.202200125 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-59733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abusafia, A. A1 - Scheid, C. A1 - Meurer, Maren A1 - Altmann, Korinna A1 - Dittmer, U. A1 - Steinmetz, H. T1 - Microplastic sampling strategies in urban drainage systems for quantification of urban emissions based on transport pathways JF - Applied Research N2 - Tracking waterborne microplastic (MP) in urban areas is a challenging task because of the various sources and transport pathways involved. Since MP occurs in low concentrations in most wastewater and stormwater streams, large sample volumes need to be captured, prepared, and carefully analyzed. The recent research in urban areas focused mainly on MP emissions at wastewater treatment plants (WWTPs), as obvious entry points into receiving waters. However, important transport pathways under wet-weather conditions are yet not been investigated thoroughly. In addition, the lack of comprehensive and comparable sampling strategies complicated the attempts for a deeper understanding of occurrence and sources. The goal of this paper is to (i) introduce and describe sampling strategies for MP at different locations in a municipal catchment area under dry and wet-weather conditions, (ii) quantify MP emissions from the entire catchment and two other smaller ones within the bigger catchment, and (iii) compare the emissions under dry and wet-weather conditions. WWTP has a high removal rate of MP (>96%), with an estimated emission rate of 189 kg/a or 0.94 g/[population equivalents (PEQ · a)], and polyethylene (PE) as the most abundant MP. The specific dry-weather emissions at a subcatchment were ≈30 g/(PEQ · a) higher than in the influent of WWTP with 23 g/(PEQ · a). Specific wet-weather emissions from large sub-catchment with higher traffic and population densities were 1952 g/(ha · a) higher than the emissions from smaller catchment (796 g/[ha · a]) with less population and traffic. The results suggest that wet-weather transport pathways are likely responsible for 2–4 times more MP emissions into receiving waters compared to dry-weather ones due to tire abrasion entered from streets through gullies. However, more investigations of wet-weather MP need to be carried out considering additional catchment attributes and storm event characteristics. KW - Combined sewer system KW - Large volume samplers KW - Microplastic pollution KW - Separate sewer system KW - Stormwater retention tank PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568271 DO - https://doi.org/10.1002/appl.202200056 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Axel A1 - Altmann, Korinna A1 - Kocher, B. A1 - Braun, U. T1 - Determination of tire wear markers in soil samples and their distribution in a roadside soil JF - Chemosphere N2 - Tire wear (TW) constitutes a significant source of microplastic in terrestrial ecosystems. It is known that particles emitted by roads can have an effect up to 100 m into adjacent areas. Here, we apply for the first-time thermal extraction desorption gas chromatography-mass spectrometry (TED-GC/MS) to determine TW in soil samples by detection of thermal decomposition products of styrene-butadiene rubber (SBR), without additional enrichment. Additionally, zinc contents were determined as an elemental marker for TW. Mixed soil samples were taken along three transects along a German motorway in 0.3, 2.0, and 5.0 m distance from the road. Sampling depths were 0–2, 2–5, 5–10, and 10–20 cm. Four fine fractions, 1 000–500, 500–100, 100–50, and <50 μm, were analyzed. TW contents based on SBR ranged from 155 to 15 898 mg kg−1. TW contents based on zinc were between 413 and 44 812 mg kg−1. Comparison of individual values of SBR and zinc reveals SBR as a more specific marker. Results confirm that most TW ends up in the topsoil within a 2 m distance. The sampling strategy resulted in representative data for a larger area. Standard deviations of quadruple TED-GC/MS determination of SBR were <10% for all grain size fractions. TED-GC/MS is a suitable analytical tool for determining TW in soil samples without the use of toxic chemicals, enrichment, or special sample preparation. KW - Microplastic KW - TED-GC/MS KW - Tire wear PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543344 DO - https://doi.org/10.1016/j.chemosphere.2022.133653 VL - 294 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-54334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Sobol, Oded A1 - Altmann, Korinna A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem T1 - Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part I: Effect on surface chemistry and corrosion behavior JF - Materials and Corrosion N2 - Stainless steel AISI 304 surfaces were studied after a mild anodic polarization for oxide growth in the presence and absence of two derivatives of vitamin B2 (riboflavin and flavin mononucleotide) that can be secreted by metal‐reducing bacteria and act as a chelating agent for iron species. The alterations in oxide chemistry were studied by means of surface‐sensitive techniques such as X‐ray photoelectron spectroscopy and time‐of‐flight secondary ion mass spectrometry analysis. The complementary electrochemical characterization revealed a preferential growth of an oxide/hydroxide iron‐rich film that is responsible for an altered pit initiation and nucleation behavior. These findings suggest that as the corrosion behavior is determined by the interplay of the chemical and electronic properties, only a mild anodic polarization in the presence of redox‐active molecules is able to alter the chemical and electronic structure of the passive film formed on stainless steel AISI 304. This helps to achieve a profound understanding of the mechanisms of microbially influenced corrosion (MIC) and especially the possible effects of the redox‐active biomolecules, as they may play an important role in the corrosion susceptibility of stainless steel surfaces. KW - Corrosion KW - Stainless steel KW - Surface analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528117 DO - https://doi.org/10.1002/maco.202012191 VL - 72 IS - 6 SP - 974 EP - 982 PB - Wiley AN - OPUS4-52811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - PlasticsEurope - plastic powders - Reference materials N2 - The talk gives ideas about possible collaboration between BAM and PlasticEurope and their BRIGID project. T2 - Project meeting of BRIDGIT project of PlasticsEurope CY - Online meeting DA - 01.02.2023 KW - Microplastics KW - PlasticEurope PY - 2023 AN - OPUS4-57012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Ciornii, Dimitri A1 - Hodoroaba, Vasile-Dan A1 - Fengler, Petra A1 - Wiesner, Yosri A1 - Lenssen, E. A1 - Miclea, P.-T. A1 - Giovannozzi, A. M. A1 - Visileanu, E. T1 - Overview of CUSP and PlasticTrace N2 - The presentation summarises the work of CUSP and PlasticTrace EU joint research projects of the last year. T2 - Microplastics Scientific Workshop of PlasticsEurope CY - Amsterdam, The Netherlands DA - 08.05.2023 KW - Microplastics KW - Microplastics standardisation KW - Reference materials KW - Polymer 3R PY - 2023 AN - OPUS4-57460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monikh, F. A. A1 - Baun, A. A1 - Hartmann, N. B. A1 - Kortet, R. A1 - Akkanen, J. A1 - Lee, J.-S. A1 - Shi, H. A1 - Lahive, E. A1 - Uurasjärvi, E. A1 - Tufenkji, N. A1 - Altmann, Korinna A1 - Wiesner, Yosri A1 - Grossart, H.-P. A1 - Peijnenburg, W. A1 - Kukkonen, J. V. K. T1 - Exposure protocol for ecotoxicity testing of microplastics and nanoplastics JF - Exposure protocol for ecotoxicity testing of microplastics and nanoplastics N2 - Despite the increasing concern about the harmful effects of micro- and nanoplastics (MNPs), there are no harmonized guidelines or protocols yet available for MNP ecotoxicity testing. Current ecotoxicity studies often use commercial spherical particles as models for MNPs, but in nature, MNPs occur in variable shapes, sizes and chemical compositions. Moreover, protocols developed for chemicals that dissolve or form stable dispersions are currently used for assessing the ecotoxicity of MNPs. Plastic particles, however, do not dissolve and also show dynamic behavior in the exposure medium, depending on, for example, MNP physicochemical properties and the medium’s conditions such as pH and ionic strength. Here we describe an exposure protocol that considers the particle-specific properties of MNPs and their dynamic behavior in exposure systems. Procedure 1 describes the top-down production of more realistic MNPs as representative of MNPs in nature and particle characterization (e.g., using thermal extraction desorption-gas chromatography/mass spectrometry). Then, we describe exposure system development for short- and long-term toxicity tests for soil (Procedure 2) and aquatic (Procedure 3) organisms. Procedures 2 and 3 explain how to modify existing ecotoxicity guidelines for chemicals to target testing MNPs in selected exposure systems. We show some examples that were used to develop the protocol to test, for example, MNP toxicity in marine rotifers, freshwater mussels, daphnids and earthworms. The present protocol takes between 24 h and 2 months, depending on the test of interest and can be applied by students, academics, environmental risk assessors and industries. KW - Microplastics KW - TED-GC/MS KW - Cryo milling PY - 2023 DO - https://doi.org/10.1038/s41596-023-00886-9 SN - 1754-2189 SP - 1 EP - 38 PB - Nature Protocols AN - OPUS4-58557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Materials N2 - The talk is a summary of materials and challenges recognized in the CUSP Cluster. T2 - CUSP Annual Meeting at JRC (ISPRA) CY - Ispra, Italy DA - 08.06.2022 KW - Microplastic KW - CUSP KW - H2020 PY - 2022 AN - OPUS4-55099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Braun, U. A1 - Herper, D. A1 - Knefel, M. A1 - Bednarz, M. A1 - Bannick, C.-G. T1 - Smart filters for the analysis of microplastic in beverages filled in plastic bottles JF - Food Additives & Contaminants: Part A N2 - The occurrence of microplastic (MP) in food products, such as beverages in plastic bottles, is of high public concern. Existing analytical methods focus on the determination of particle numbers, requiring elaborate sampling tools, laboratory infrastructure and generally time-consuming imaging detection methods. A comprehensive routine analysis of MP in food products is still not possible. In the present work, we present the development of a smart filter crucible as sampling and detection tool. After filtration and drying of the filtered-off solids, a direct determination of the MP mass content from the crucible sample can be done by thermal extraction desorption gas chromatography mass spectroscopy (TED-GC/MS). The new filter crucible allows a filtration of MP down to particle sizes of 5 µm. We determined MP contents below 0.01 µg/L up to 2 µg/L, depending on beverages bottle type. This may be directly related to the bottle type, especially the quality of the plastic material of the screw cap. Dependent on the plastic material, particle formation increases due to opening and closing operations during the use phase. However, we have also found that some individual determinations of samples were subjected to high errors due to random events. A conclusive quantitative evaluation of the products is therefore not possible at present. KW - Microplastic KW - TED-GC/MS KW - Plastic bottles KW - Bbeverages KW - Filter crucible PY - 2021 DO - https://doi.org/10.1080/19440049.2021.1889042 SN - 1944-0057 VL - 38 IS - 4 SP - 691 EP - 700 PB - Taylor & Francis AN - OPUS4-52323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bauer, J. A1 - Miclea, P.-T. A1 - Braun, U. A1 - Altmann, Korinna A1 - Turek, M. A1 - Hagendorf, C. T1 - Microplastic detection and analysis in water samples T2 - Sustainable Energy-Water-Environment Nexus in Deserts N2 - Microplastic detection in water samples becomes important for tracing microplastic sources. Microplastic may harm desalination facilities by blocking filters and disturbing the marine food chain. Thermo analytical methods such as pyrolysis gas chromatography mass spectroscopy, and spectroscopic methods like (micro) Raman spectroscopy or (micro) Fouriertransform infrared spectroscopy in combination with appropriate filters and sample preparation are suitable for analyzing microplastics on a scale from 1 µm to 1000 µm fast and unambiguous. While the thermo analytical methods are suitable for larger sample volumes, Raman spectroscopy and Fouriertransform infrared spectroscopy are able to detect and analyze single microplastic particles for instance in bottled water. Machine learning algorithms ensure a reliable classification of different plastic materials. T2 - International Conference on Sustainable Energy-Water-Environment Nexus in Desert Climate 2019 CY - Ar-Rayyan, Qatar DA - 02.12.2019 KW - Microplastics KW - Water samples PY - 2022 SP - 111 EP - 113 PB - Springer AN - OPUS4-56240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Current projects in risk assessment and harmonisation N2 - The talk gives an overview about EU projects currently running for risk assessment and harmonisation in microplastic analysis. T2 - Micro- and Nanoplastics CY - Halle (Saale), Germany DA - 01.11.2023 KW - Microplastics KW - Harmonisation in microplastics KW - Polymer 3R PY - 2023 AN - OPUS4-58766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Fengler, Petra A1 - Dailey, L. A. A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Wimmer, L. A1 - Mehn, D. A1 - Parker, L. A1 - Weimann, Christiane A1 - Potthoff, A. T1 - ILC on Laser diffraction - preliminary results N2 - This presentation addresses an interlaboratory comparison on size of polymeric particles (microplastics) measured by laser diffraction. Two microplastic particles were measured separately and once as mixture. Evaluation was done with Fraunhofer and Mie. Here, the first results are presented. T2 - CUSP Annual Meeting CY - Utrecht, Netherlands DA - 12.09.2023 KW - Microplastics KW - Laser diffraction KW - Polymer 3R KW - Size distribution KW - Polymer size PY - 2023 AN - OPUS4-58318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Portela, R. A1 - Geburtig, Anja A1 - Barbero, F. A1 - Fenoglio, I. A1 - Visileanu, E. A1 - Wiesner, Y. A1 - Braun, U. A1 - Miclea, P.-T. T1 - What can thermoanalytical methods do for you ? N2 - This presentation summarizes outcomes of the CUSP projects POLYRISK and PlasticsFatE according to thermoanalytical methods.It highlights the importants of analytical methods to measure physical and chemical properties of the test materials. These informations are neccessary for interpretation of the toxicological test results. T2 - CUSP conference CY - Utrecht, Netherlands DA - 14.09.2023 KW - Microplastics KW - TED-GC/MS KW - CUSP KW - Polymer 3R KW - Thermoanalytical methods PY - 2023 AN - OPUS4-58312 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins JF - Nanomaterials N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Goedecke, Caroline A1 - Bannick, C.-G. A1 - Abusafia, A. A1 - Scheid, C. A1 - Steinmetz, H. A1 - Paul, Andrea A1 - Beleites, C. A1 - Braun, U. T1 - Identification of microplastic pathways within a typical European urban wastewater system JF - Applied Research N2 - In recent years, thermoextraction/desorption-gas chromatography/mass spectrometry (TED-GC/MS) has been developed as a rapid detection method for the determination of microplastics (MP) mass contents in numerous environmentally relevant matrices and, in particular, for the measurement of polymers in water samples without time-consuming sample preparation. The TED-GC/MS method was applied to investigate a typical European municipal wastewater system for possible MP masses. Such investigations are important in view of the recent revision of the Urban Wastewater Treatment Directive. Four different representative sampling sites were selected: greywater (domestic wastewater without toilet), combined sewer, and influent and effluent of a wastewater treatment plant (WWTP). All samples were collected by fractional filtration. Filtration was carried out over mesh sizes of 500, 100, 50, and in some cases, 5 µm. Polyethylene (PE), polypropylene (PP), and polystyrene (PS) were detected in all samples, with the PE fraction dominating in all cases. Styrene-butadiene rubber which serves as an indication of tire abrasion, was only found in the influent of the WWTP. The highest MP mass contents were found in the combined sewer, so MP can become a source of pollution during heavy rain events when the capacity limits of the effluent are reached, and the polluted effluent is released uncontrolled into the environment. Based on the studies, MP retention from the WWTP could be estimated to be approximately 96%. Few trends in polymer type or mass contents were detected within the different fractions of the samples or when comparing samples to each other. KW - Microplastics KW - Microplastic analysis KW - TED-GC/MS KW - Microplastic pathways KW - Mass contents PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568289 DO - https://doi.org/doi.org/10.1002/appl.202200078 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Stakeholder Workshop – Plastictrace WP1 N2 - The talk is about WP1 in the PlasticTrace project funded by Euromat. The projects harmonizes microplastic analysis by developing SOPs and reference materials. WP1 is responsible for material selection and preparation. All particles are homogeneity and stability checked according to ISO guide 35. T2 - Stakeholder workshop of PlasticTrace project CY - Online meeting DA - 14.12.2022 KW - Microplastic KW - Microplastics standardisation KW - Reference materials PY - 2022 AN - OPUS4-56772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahmy, A. A1 - Saeed, A. A1 - Dawood, U. A1 - Abdelbary, H. A1 - Altmann, Korinna A1 - Schönhals, Andreas T1 - Nano-MnO2/xanthan gum composite films for NO2 gas sensing JF - Materials Chemistry and Physics N2 - Nowadays, sensors based on polymers/nanostructured metal oxide composites have been investigated exten-sively because of their sensitivity to NO2 gas at ambient temperature. In this work, nanocomposite membranes of xanthan gum (XG) with different contents of MnO2 nanoparticles were prepared as a potential NO2 gas sensor operating at room temperature by a simple one-step oxidation-reduction reaction. The structural, morphological, thermal, and electrical properties of the composite membrane were investigated. The FT-IR results confirm the successful preparation of MnO2 through the oxidation of XG by KMnO4 and reveal further the structural changes of the XG/MnO2 nanocomposite upon its exposure to NO2 gas. The capping of the synthesized MnO2 nano-particles by XG, the surface composition of the XG/MnO2 nanocomposite membranes, and the effect of NO2 gas on the surface composition was investigated using the XPS technique. The DC conductivity and dielectric loss of nanocomposites were higher than for neat XG. The conductivities of the nanocomposites XG/MO-4, XG/MO-4/ low NO2, and XG/MO-4/high NO2 composites are half, one, and three orders of magnitude higher than that for pure XG revealing a transition from insulating to conductive properties. The results demonstrated that XG/MnO2 nanocomposite membranes are promising for potential applications in NO2 gas sensing. KW - Gas sensors KW - Membranes KW - Metal oxides KW - Nanocomposites KW - Semiconductors PY - 2022 DO - https://doi.org/10.1016/j.matchemphys.2022.127277 SN - 0254-0584 VL - 296 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-56769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heller, C. A1 - Altmann, Korinna A1 - Braun, U. A1 - Kerndorff, A. A1 - Bannick, C.-G. A1 - Fuchs, M. A1 - Thamsen, P. U. T1 - Garment ageing in a laundry care process under household‐like conditions JF - Applied Research N2 - This study reflects typical consumer textile washing behaviour while taking into account existing standards in the household appliance and garment industries. Two garments were washed repeatedly with artificial dirt and detergent 30 times. The collected washing water was separated using fractional filtration. Textile physical tests were used to follow property changes of the garments, the microplastic release is determined using thermoextraction/desorbtion–gas chromatography/mass spectrometry and the total organic carbon was measured as a sum parameter for the organic bonded carbon. This article shows the importance of a reality‐based approach when investigating microplastics of textile origin in the laundry care process. Deposits of detergent and dirt on the textiles were detected. The total mass of sieve residues was much higher than the release of synthetic polymers. The cotton content of the garments causes a much higher fibre release than synthetic fibres. Both will lead to false results by purely gravimetric analysis because nonpolymer fibres will be included microplastic mass. The results cannot be generalised only by the main polymer type, knowledge of the textile construction must be included for final evaluation. KW - Fibre release KW - Microplastics KW - TED-GC/MS KW - Washing machine PY - 2023 DO - https://doi.org/10.1002/appl.202200086 SP - 1 EP - 8 PB - Wiley online library AN - OPUS4-56976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Bannick, C. G. A1 - Kerndorff, A. A1 - Heller, C. A1 - Fuchs, M. A1 - Braun, U. T1 - Release of synthetic fibres during washing of typical household textiles: Findings from washing machine tests and resulting policy recommendations N2 - This talk summarizes the experimental setup and the results of one washing experiment under realistic conditions according to microplastic fiber release. T2 - Tackling microplastics in the environment CY - Brussels, Belgium DA - 09.03.2023 KW - Microplastics KW - Fibers of textile origin KW - Washing machine KW - Microplastic fibre release PY - 2023 AN - OPUS4-57204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Portela, R A1 - Fernández-Lozano, J. F. A1 - Barbero, F. A1 - Bussy, C. A1 - Potthoff, A. A1 - Costa, A. A1 - Komlavi Afanou, A. J. T1 - Material Selection Strategy N2 - This poster is a summary of the material used in the PlasticsFatE project. It indicates the strategies for testing of various polymer properties next to each other according to risk and hazard assessment. T2 - CUSP annual meeting and conference CY - Utrecht, Netherlands DA - 12.09.2023 KW - Microplastics KW - CUSP KW - Material selection PY - 2023 AN - OPUS4-58311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmitt, M. A1 - Altmann, Korinna A1 - Fengler, Petra A1 - Gehde, M. T1 - Air-based polyethylene fragmentation with high yield to form microplastic particles as reference material candidates JF - Applied Research N2 - Microplastic particles with sizes between 1 to 1000 μm are widely distributed worldwide. Origin, transport pathways and fate are poorly known, as sampling, sample preparation and detection methods are major challenges. In addition, reference materials that mimic environmental particles are lacking. Most challenging is the yield of MP particle production and the need for resource-intensive grinding with liquid nitrogen. In this paper, a machine is designed to produce aged microplastic particles as reference material candidates with high yield. The machine is based on ultraviolet aging of a thin foil and mechanical fragmentation using clean air. An example of aging and fragmentation of high density polyethylene with additional physical and chemical characterization of shape, size, aging state by carbonyl index and density is presented. KW - Microplastics KW - Degradation of polyethylene KW - Air fragmentation KW - Microplastics reference material PY - 2023 DO - https://doi.org/10.1002/appl.202200121 SP - 1 EP - 18 PB - Wiley online library AN - OPUS4-57203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Scheid, C. A1 - Steinmetz, H. A1 - Bannick, C.-G. A1 - Abusafia, A. A1 - Dittmer, U. A1 - Braun, Ulrike T1 - Microplastic occurrence in urban sewage systems: Identification of sources for pathways into the environment N2 - All over the world, microplastic (MP) particles (particle size: 1 - 1.000 µm) are found in water, soil, air, biota and even food products. But plenty of these discussed findings are based on a very low number of real datasets, which are extrapolated to general projections. Furthermore, most data are not comparable because the strategies for sampling, sample preparation and detection methods are not harmonised/ or standardised. This would require extensive proficiancy tests. Because of the ubiquity presence and the unclear risks, which might arise from those particles, various political and environmental organisations (i.e. OECD, UNEP, WHO) identify the reduction of plastic entry in the environment as a key challenge for now and the future. This challenge includes the identification of relevant entry pathways but also the demand of harmonised, meaningful and reliable analytical procedures. Regarding this task within the last few years, a fast practical solution for MP analysis has been developed, which includes the steps of representative sampling, adequate sample preparation and fast detection. Sampling is done by fractional filtration over sieves with mesh sizes of 500, 100, 50 and 5 µm [1]. The received samples are measured by ThermoExtraction/Desorption-Gas Chromatography-Mass Spectrometry (TED-GC-MS) [1,2]. for the most abundant polymers used in practice, which are polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), polyamide (PA) and acrylate as well as styrene-butadiene-rubber (SBR), a main component of tires. The present presentation will give first-time insight in a comprehensive dataset of microplastic analysis for an exemplary urban sewage system. MP mass contents of different waters at several days, such as greywater, stormwater retention tank, influent and effluent of a wastewater treatment plant (WWTP) within an urban sewage system in Germany are determined. Furthermore, the mass of the polymers found in dry weather and rain weather flow are compared. The use of these large datasets allows first expressive conclusions regarding the contribution of urban sewage system to the MP entry sources in the environments. We found PP and PS in all different waters. Furthermore, there is SBR in influent and also in effluent of the WWTP. Surprisingly, we could also detect hugh amounts of PE in the effluent of the WWTP. T2 - SETAC Europe 2020 CY - Online meeting DA - 03.05.2020 KW - Microplastic analysis KW - TED-GC/MS KW - Microplastic particles KW - Microplastic mass contents PY - 2020 AN - OPUS4-50795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Jörg A1 - Altmann, Korinna A1 - Wettmarshausen, Sascha A1 - Hidde, Gundula T1 - Coating of carbon fibers with adhesion-promoting thin polymer layers using plasma polymerization or electrospray ionization technique—A comparison JF - Plasma Processes and Polymers N2 - Plasma polymers and electrospray-ionization (ESI) polymer layers are compared for most efficient adhesion promotion in carbon fiber-epoxy resin composites. The ultra-thin ESI layers (2–30 nm) of commercial poly(acrylic acid) and poly-(hydroxyethylmethacrylate) produce an significant increase of adhesion measured by single-fiber pull out tests. However, plasma Treatment has also advantages, such as simultaneous activation of the fiber substrate. Chemical structure and composition are rather far from the regular structure of commercial polymers as deposited by ESI processing. KW - Plasma polymers KW - Electrospray ionization polymers KW - Poly(acrylic acid) KW - Poly- (hydroxyethylmethacrylate) PY - 2017 DO - https://doi.org/10.1002/ppap.201600074 SN - 1612-8869 SN - 1612-8850 VL - 14 IS - 3 SP - e1600074-1 EP - 14 AN - OPUS4-40510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Waniek, Tassilo T1 - Needs, concepts and state of the art: Top-down production of reference materials for micro- and nanoplastics and their use in harmonisation processes N2 - The talk explains the top-down production of materials suitable for mircoplastics and nanoplastics and the use in ILCs. T2 - EUROLAB webinar: MICROPLASTICS: regulations, standards and the role of laboratories CY - Online meeting DA - 15.02.2023 KW - Microplastics KW - Nanoplastics KW - ILC KW - Milling PY - 2023 AN - OPUS4-57008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Harmonisation efforts of the CUSP projects N2 - The talk is about harmonisation approaches within CUSP. First the five H2020 projects for research on risk assessment regarding microplastics topic were presented. Secondly, harmonisation process were discussed. T2 - VAMAS SC 47 Meeting CY - Turin, Italy DA - 19.10.2022 KW - Microplastics KW - Harmonisation KW - Nanoplastics KW - H2020 KW - Risk assessment PY - 2022 AN - OPUS4-56077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Sturm, Heinz A1 - Fischer, D. A1 - Fischer, F. A1 - Ivleva, N. A1 - Witzig, C. A1 - Zumbülte, N. A1 - Braun, U. T1 - Results of the Plastic in the environment comparative test N2 - The talk describes the sturcture and the results of the "plastics in the environment" comparative test of 2019. T2 - Symposium "Challenges of microplastic analysis – Bridging state of the art and policy needs” CY - Online meeting DA - 09.09.2021 KW - Microplastic KW - Comparative test KW - ILC PY - 2021 AN - OPUS4-53236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Uzunlu, Büsra A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Waniek, Tassilo T1 - Update – Milling and weathering of granules N2 - The talk aims to describe the production of microplastic particles as test material and the additional weathering for aged particles. T2 - PlasticsFate meeting CY - Online meeting DA - 12.11.2021 KW - Microplastic KW - Cryo milling KW - Aged particles PY - 2021 AN - OPUS4-53737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Topolniak, Ievgeniia A1 - Silbernagl, Dorothee A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Long-time behavior of surface properties of microstructures fabricated by multiphoton lithography JF - Nanomaterials N2 - The multiphoton lithography (MPL) technique represents the future of 3D microprinting, enabling the production of complex microscale objects with high precision. Although the MPL fabrication parameters are widely evaluated and discussed, not much attention has been given to the microscopic properties of 3D objects with respect to their surface properties and time-dependent stability. These properties are of crucial importance when it comes to the safe and durable use of these structures in biomedical applications. In this work, we investigate the surface properties of the MPL-produced SZ2080 polymeric microstructures with regard to the physical aging processes during the post-production stage. The influence of aging on the polymeric microstructures was investigated by means of Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). As a result, a time-dependent change in Young’s Modulus, plastic deformation, and adhesion and their correlation to the development in chemical composition of the surface of MPL-microstructures are evaluated. The results presented here are valuable for the application of MPL-fabricated 3D objects in general, but especially in medical technology as they give detailed information of the physical and chemical time-dependent dynamic behavior of MPL-printed surfaces and thus their suitability and performance in biological systems. KW - Multiphoton lithography KW - Additive manufacturing KW - Microfabrication KW - SZ2080 negative photo-resist KW - Young´s modulus KW - Aging KW - Surface properties KW - X-ray photoelectron spectroscopy KW - Atomic force microscopy KW - Force-distance-curve PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542166 DO - https://doi.org/10.3390/nano11123285 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -