TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Laser Powder Bed Fusion (L-PBF) allow the fabrication of lightweight near net shape AlSi10Mg components attractive to the aerospace, automotive, biomedical and military industries. During the build-up process, high cooling rates occur. Thus, L-PBF AlSi10Mg alloys exhibit a Si-nanostructure in the as-built condition, which leads to superior mechanical properties compared to conventional cast materials. At the same time, such high thermal gradients generally involve a deleterious residual stress (RS) state that needs to be assessed during the design process, before placing a component in service. To this purpose post-process heat treatments are commonly performed to relieve detrimental RS. In this contribution two low-temperature stress-relief heat treatments (SRHT) are studied and compared with the as-built state: a SRHT at 265°C for 1 hour and a SRHT at 300°C for 2 hours. At these temperatures microstructural changes occur. In the as-built state, Si atoms are supersaturated in the α-aluminium matrix, which is enveloped by a eutectic Si-network. At 265°C the Si precipitation from the matrix to the pre-existing network is triggered. Thereafter, above 295°C the fragmentation and spheroidization of the Si branches takes place, presumably by Al–Si interdiffusion. After 2 hours the original eutectic network is completely replaced by uniformly distributed blocky particles. The effect of the heat and the microstructure modification on the RS state and the fatigue properties is investigated. Energy dispersive x-ray and neutron diffraction are combined to investigate the near-surface and bulk RS state of a L-PBF AlSi10Mg material. Differences in the endurance limit are evaluated experimentally by high cycle fatigue (HCF) tests and cyclic R-curve determination. T2 - 43rd Materials Mechanics Seminar CY - Sani, Chalkidiki, Greece DA - 05.06.2022 KW - AlSi10Mg KW - Fatigue KW - Neutron diffraction KW - X-ray diffraction PY - 2022 AN - OPUS4-55090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, M. A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Design methodology of vessel produced by L PBF stainless steel using representative specimens N2 - This work presents the preliminary results of an ongoing project with a double objective: on the one hand, the characterisation of the mechanical properties against fatigue damage of an additively manufactured 316 stainless steel produced by laser powder bed-based (L-PBF) technology; on the other hand, the implementation of numerical simulation techniques able to predict the mechanical behaviour of the material in order to optimise and reduce the design costs of vessels used in the chemical sector. The current state of the work developed in this research framework allows showing the first batch of experimental results of crack propagation rate (FCGR) and high cycle fatigue (HCF) tests. The geometry of the vessels studied presents three clearly differentiated regions, either in terms of thickness (11-15 mm) or concerning the inclination of the walls to the direction of manufacturing (0º - 45º). The experimental campaign carried out so far allows identifying the differences in behaviour when comparing different extraction locations around the vessel. This is due to the variations in thermal cycles that the deposited material undergoes during the manufacturing process. Therefore, this causes variations in the microstructure which lead to changes in the response of the material. In this work, these differences are analysed qualitatively and quantitatively from the results of FCGR and HCF, thus allowing to locate the regions with the highest risk in terms of structural integrity against fatigue. This preliminary phase together with the numerical simulation of the additive manufacturing process are key to achieving a reliable description and modelling of the material. The latter will make it possible to address the priority aim of this project, involving the manufacture of independent samples whose properties are representative of the original material extracted from the reference vessels. It is, therefore, a comprehensive methodology for the design of additively manufactured components based on the localised fatigue mechanical properties of representative specimens. T2 - ECF23, European Conference on Fracture 2022 CY - Funchal, Portugal DA - 27.06.2022 KW - Additive manufacturing KW - Steel 316L KW - Fracture Mechanics PY - 2022 AN - OPUS4-55240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönherr, J. A. A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Geilen, M. B. A1 - Klein, M. A1 - Oechsner, M. T1 - Robust Determination of Fatigue Crack Propagation Thresholds from Crack Growth Data N2 - To assess the ability of cracks to grow, a robust determination of the threshold against fatigue crack propagation ∆Kth is of paramount importance. The standards ASTM E647 and ISO 12108 introduce operational definitions of ∆Kth based on the crack propagation rate da/dN. For evaluating ∆Kth, both suggest fitting a linear function to a defined subset of the logarithmic ∆K – da/dN test data, where ∆Kth follows by evaluating the linear function at da/dN = 10-7 mm/cycle and da/dN = 10-8 mm/cycle, respectively. In general, this kind of fit suffers from a bad representation of the actual curvature of the crack propagation curve. Therefore, we propose a robust method for evaluating ∆Kth using a non-linear function that reduces the artificial conservativeness induced by the evaluation method as well as the susceptibility to scatter in test data and the influence of test data density. The method is calibrated against a large set of S690QL crack growth data obtained from a total of 48 specimens, and validated against a set of S355NL and S960QL data (3 specimens each), obtained as a part the IBESS (integral fracture mechanics determination of the fatigue strength of welds) project. T2 - ECF23 (European Conference on Fracture 2022) CY - Madeira, Portugal DA - 27.06.2022 KW - Fatigue crack propagation threshold KW - ISO 12108 KW - ASTM E647 KW - Data evaluation methods KW - Experimental determination PY - 2022 AN - OPUS4-55252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Fracture mechanics fatigue life assessmente based on effective crack propagation data obtained at closure-free conditions N2 - The use of effective crack propagation data, i.e. not affected by the crack closure mechanisms, is proposed as a reliable and robust alternative for the fatigue life assessment of cyclically loaded components. T2 - 43rd Materials Mechanics Seminar CY - Sani, Greece DA - 05.06.2022 KW - Effective crack propagation data KW - Crack-closure KW - Component assessment PY - 2022 AN - OPUS4-55044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro T1 - Burst behaviours of aero-engine turbine disk at overspeed conditions N2 - This presentation focuses on the basic ideas and current status of the development of an arithmetical method to predict the failure rotational speed of turbine disks. The certification specification requires that a gas turbine aero-engine must hold 5 minutes at overspeed conditions without critical failure. Therefore, instead of experimental proof from spin-tests using test-disks similar to engine components, it is considered to use simple specimen with similar test conditions compared to real overspeed scenarios. These test conditions, or stress fields are determined using arithmetical method, e.g. finite element method, with consideration of fracture mechanics under quasi-static conditions with a given rotational speed. Failure modes like hoop burst and rim peeling are considered during determination of stress fields. Various crack-tip parameters are used to explore the similarity of stress field between simple specimen and real overspeed scenarios. Additionally, probabilistic aspects and the implementation of a global stability criterion for overspeed analysis are also considered. T2 - 43rd Materials Mechanics Seminar CY - Sani, Chalkidiki, Greece DA - 06.06.2022 KW - Structural integrity KW - Fracture mechanics KW - Turbine disk KW - Overspeed PY - 2022 AN - OPUS4-55081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro T1 - Fracture mechanics-based structural integrity assessment of aero-engine turbine disks under overspeed conditions N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. While these tests provide, on the one hand, a reliable definition of the critical conditions for real components, on the other hand they represent a relevant cost item for engine manufacturers. The aim of this work is to present part of a fracture mechanics-based procedure under development which aims at replacing the tests on production-similar disks with lab tests on fracture mechanics specimens. In particular, the rim-peeling failure mode is considered as case study. A semi-circular surface crack is modelled at the most stressed region at the diaphragm of a turbine disk, with the crack plane perpendicular to the radial direction. The crack is therefore subjected to a biaxial stress state and grows under increasing rotational speed until it triggers the rim-peeling failure. The finite element simulation of the cracked disk considers the real thermal and mechanical loading conditions. In order to design a lab representative specimen, beside the crack driving force, expressed in terms of J-integral, also the constraint to plastic deformation e.g., stress triaxiality, at the crack-tip must be similar for the same crack in the specimen and in the disk. This has been achieved and as expected, both the highest J-integral and constraint factor are calculated at the same location along the crack front for both disk and specimen. The results of the structural integrity assessment in the form of a Failure Assessment Diagram (FAD) show good agreement between designed specimen and disk both in terms of expected failure mode and value of the critical speed. Probabilistic aspects are also considered in the calculations. T2 - Turbo Expo 2022 CY - Rotterdam, Netherlands DA - 13.06.2022 KW - Structural integrity KW - Fracture mechanics KW - Turbine disk KW - Overspeed PY - 2022 AN - OPUS4-55082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Optimisation of surface residual stresses using hybrid milling processes for additive manufactured Ni alloy components N2 - Ni alloys are cost intensive materials and generally classified as difficult-to-cut materials. However, machining of these materials is needed especially in case of alloy 36 (1.3912), which is commonly used in mould construction for the production of fibre-reinforced composites. With regard to repair, modification and manufacturing of such components, additive manufacturing offers significant economic advantages. Nevertheless, subsequent machining steps are needed to achieve the final component contour and defined surface conditions. Dependent on the material and machining process conditions, detrimental tensile residual stresses may be the result on the machined surface, having negative impact on the component performance and safety. Recent studies exhibited that hybrid machining processes, such as ultrasonic-assisted milling (USAM), are suitable for achieving favourable residual stress states at the surface of difficult-to-cut Ni-Cr alloys. In this investigation, wire arc additive manufactured (WAAM) specimens of alloy 36 were finish milled under different milling conditions. In addition to the machined surfaces condition and topology, the surface-near residual stresses were analysed using X-ray diffraction (XRD). Especially for low cutting speeds, significantly improved surface properties, roughness parameters and lower mechanical and microstructural degradations were found for the specimen machined with USAM compared to conventional milling. The improved surface integrity could furthermore be observed by a significant reduction of the tensile residual stresses in the surface boundary area. T2 - ICRS11, 11th International Conference on Residual Stresses CY - Nancy, France DA - 27.03.2022 KW - Surface integrity KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Ni alloy KW - Alloy 36 PY - 2022 AN - OPUS4-54904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Optimisation of surface residual stresses using hybrid milling processes for additive manufactured Nickel alloy components N2 - Ni alloys are cost intensive materials and generally classified as difficult-to-cut materials. However, machining of these materials is needed especially in case of alloy 36 (1.3912), which is commonly used in mould construction for the production of fibre-reinforced composites. With regard to repair, modification and manufacturing of such components, additive manufacturing offers significant economic advantages. Nevertheless, subsequent machining steps are needed to achieve the final component contour and defined surface conditions. Dependent on the material and machining process conditions, detrimental tensile residual stresses may be the result on the machined surface, having negative impact on the component performance and safety. Recent studies exhibited that hybrid machining processes, such as ultrasonic-assisted milling (USAM), are suitable for achieving favourable residual stress states at the surface of difficult-to-cut Ni-Cr alloys. In this investigation, wire arc additive manufactured (WAAM) specimens of alloy 36 were finish milled under different milling conditions. In addition to the machined surfaces condition and topology, the surface-near residual stresses were analysed using X-ray diffraction (XRD). Especially for low cutting speeds, significantly improved surface properties, roughness parameters and lower mechanical and microstructural degradations were found for the specimen machined with USAM compared to conventional milling. The improved surface integrity could furthermore be observed by a significant reduction of the tensile residual stresses in the surface boundary area. T2 - Bachelor-, Master-, Doktoranden-Kolloquium, Otto-von-Guericke-Universität Magdeburg CY - Magdeburg, Germany DA - 18.05.2022 KW - Surface integrity KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Ni alloy KW - Alloy 36 PY - 2022 AN - OPUS4-54908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vecchiato, Luca A1 - Meneghetti, Giovanni A1 - Moda, Giovanni A1 - Madia, Mauro T1 - Fatigue limit estimation of welded joints under constant amplitude uniaxial loading adopting the cyclic R-curve analysis N2 - Most of the in-service failures of welded structures are due to fatigue damage occurring in the joints. Damage tolerant approaches based on the principles of Fracture Mechanics have been shown to play a key role in this framework, as the fatigue limit is defined by the non-propagating condition of multiple defects at the weld toe. The fatigue limit assessment can be performed using the cyclic R-curve analysis which consists in comparing the driving force of a crack propagating into a component, which depends on the geometry, material and external loads, with its resistance curve, i.e. the cyclic R-curve. The crack propagation occurs whenever the crack driving force is higher than the resistance to fatigue crack propagation, while the crack is arrested in the opposite case. Consequently, this suggests that the fatigue limit of a component is defined as that stress level at which the crack driving force curve is tangent to the crack resistance curve. In the present work, the cyclic R-curve analysis has been adopted for determining the fatigue limit of stress-relieved transverse non-load-carrying joints made of S355 structural steel and subjected to fatigue axial loadings. Experimental tests have been performed to evaluate the fatigue limit of the joints. The driving force, identified by the applied Stress Intensity Factor (SIF), has been evaluated by means of linear elastic finite element analysis taking advantage of the Peak Stress Method for its rapid estimation. Based on the experimental observations that the crack initiation and early crack growth phases in welded joints occur within the Heat Affected Zone (HAZ) the cyclic R-curve has been experimentally derived for both the base metal and HAZ material. T2 - European Conference on Fracture 2022 (ECF23) CY - Funchal, Portugal DA - 27.06.2022 KW - Welded Joints KW - Fatigue Limit KW - Cyclic R-curve PY - 2022 AN - OPUS4-55254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Schröder, Jakob T1 - Residual stresses and micromechanical properties of additively manufactured metals: why do we need a paradigm shift? N2 - An overview of the challenges and successes in the methodology to characherise residual stresses and micromechnical properties in additively manufactured metals T2 - CAM2 Annual Seminar 2022 - 5-year journey CY - Gothenburg, Sweden DA - 24.10.2022 KW - Additive Manufacturing KW - Residual stress KW - AGIL KW - MANUFACT KW - Micromechnical properties PY - 2022 AN - OPUS4-56466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Alloy modification for additive manufactured Ni alloy components Part I: Effect on microstructure and hardness N2 - Alloy 36 is an iron-based alloy with 36% nickel. It is used in applications in which dimensional stability is critical, such as molding tools for composite materials in aerospace and automotive applications. Moreover, increasingly complex structures and the optimisation of resource efficiency also require additive manufacturing steps for the production or repair of components. Additively manufactured components have a heterogeneous microstructure and anisotropic mechanical properties. In addition, the manufactured components require subsequent machining surface finishing due to the high requirements. Nickel iron alloys are difficult to machine. Additionally, inhomogeneous microstructure may lead to unstable cutting forces and conditions. Alloy modifications are made to the alloy 36. For this purpose, titanium, zirconium and niobium are added up to 1 % by mass each. Plasma-Transferred-Arc is used for the welding tests. The hardness profile is determined on the transverse section. The initial structure as well as the modifications have an austenitic structure. The microstructure of the modifications of Alloy 36 with 1% Ti and 1% Zr is not refined, instead the grain size increases. T2 - IIW C-II Intermediate meeting CY - Online meeting DA - 17.03.2022 KW - Alloy modification KW - Alloy 36 KW - Additive manufacturing PY - 2022 AN - OPUS4-56622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Correlation of process, design and welding residual stresses in WAAM of high-strength steel components N2 - High-strength fine-grained structural steels have great potential for modern weight optimized steel construc-tions. Efficient manufacturing and further weight savings are achievable due to Wire Arc Additive Manu-facturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, the application is still severely limited due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation. Residual stresses may be critical regarding the special microstructure of high-strength steels in context with the risk of cold cracking and component performance in service. Therefore, process- and material-related influences, as well as the design effects on residual stress formation and cold cracking, are being investi-gated in a research project (IGF 21162 BG) focusing a high-strength WAAM welding consumable with yield strength of over 800 MPa. Objectives are the establish-ment of special WAAM cold cracking tests and pro-cessing recommendations allowing economical, suita-ble, and crack-safe WAAM of high-strength steels. First studies on process-related influences showed transfor-mation residual stresses arising during cooling, which significantly influence stress evolution of the compo-nent during layer-wise build-up. This has not yet been investigated for WAAM of high-strength steels. Focus of this study is on the systematic investigation of interactions of the WAAM welding process and design with cooling time, hardness, and residual stresses. Defined open hollow cuboids were welded and investi-gated under systematic variation (design of experi-ments, DoE) of the scale/dimensions (cf. Fig. 1a) and heat control (interlayer temperature Ti: 100–300 °C), heat input E: 200–650 kJ/m. The welding parameters were kept constant as possible to avoid any influence by the arc and the material transfer mode. The heat input adjusted primarily via the welding speed. The resulting different weald bead widths were considered by different build-up strategies (weld beads per layer) to ensure defined wall thicknesses. The hardness was determined on cross-sections taken from the manufac-tured hollow cuboids (Fig. 1c) and the analysis of the residual stress state was carried out by means of X-ray diffraction (XRD) at defined positions on the lateral wall (Fig. 1b). The hardness is higher at the top compared to the lower weld beads, as shown in Fig. 1c exemplarily for central test parameters of the DoE = 425 kJ/mm, Ti = 200 °C). This may be attributed to the specific heat control of the top weld beads, i.e., quenching effects, which are not tempered by weld beads above as is the case for lower weld beads implying a higher hardness. It was observed that the hardness level decreases with increasing energy per unit length, while the in-terpass temperature has a rather low influence on the hardness Residual stress analysis was performed on the lat-eral wall in the welding direction, cf. Fig. 1b, to deter-mine the influence of heat control and design. In the top area of the wall, maximum longitudinal residual stress-es of up to over 500 MPa exhibit, which corresponds to approx. 65% of the nominal yield strength of the mate-rial. The statistic evaluation of stress levels in welding direction of all test specimens show that adaption of heat input may reduce welding stresses up to 50%. In-terpass temperature has less pronounced effect on cool-ing times, microstructure, and on the residual level within parameter matrix. Overall, the results show a significant influence of heat input and component di-mensions on the residual stresses and minor effect of the interpass temperature. Hence, the properties of the specimens may be effectively adjusted via heat input. The working temperatures should be considered for global shrinkage behavior or restraints. Such investiga-tions of residual stress are necessary to further deter-mine local and global welding stresses regarding the consequences on the component safety during manu-facturing and service. T2 - 6th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation CY - Osaka, Japan DA - 25.10.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Modification of Co Cr alloys to optimize of additively welded microstructures and subsequent surface finishing N2 - Cobalt chromium alloys are often used in turbine and plant construction. This is based on their high thermal and mechanical stress resistance as well as their high wear resistance to corrosive and abrasive loads. However, cobalt is a cost-intensive material that is difficult to machine. Moreover, increasingly complex structures and the optimisation of resource efficiency also require additive manufacturing steps for the production or repair of components in many sectors. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. As a result of the high stresses on the components and requirements for a high surface quality, a complementary use of additive and machining manufacturing processes is necessary. Thereby, Co–Cr alloys are extremely challenging for machining with geometrically defined cutting edges because of their low thermal conductivity combined with high strength and toughness. An approach to solve this problem is to refine and homogenise the microstructure. This is achieved by modifying the alloy with elements zirconium and hafnium, which are added up to a maximum of 1 wt.-%. A reduction of the process forces and stresses on the tool and work piece surface is also achievable via hybrid milling processes. There are already studies on the combined use of additive and machining manufacturing processes based on laser technology. However, knowledge based on powder and wire-based arc processes is important, as these processes are more widespread. Furthermore, the effects on the surface zone of additively manufactured components by hybrid finish milling have not yet been a subject of research. The results show that the structural morphology could be significantly influenced with the addition of zirconium and hafnium. T2 - 74th IIW Annual Assembly CY - Online meeting DA - 12.07.2021 KW - Modification of structural morphology KW - Co–Cr-alloy KW - Plasma-transferred arc welding KW - Ultrasonic-assisted milling PY - 2021 AN - OPUS4-56670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Residual stresses in near-component specimens of a high and a medium entropy alloy due to tig and friction stir welding N2 - The new alloying concept of multi-element systems with defined entropy (HEA - High Entropy Alloy or MEA - Medium Entropy Alloy) is gaining increasing importance in materials research. Significantly improved properties or combinations of properties are shown by some HEA/MEA-systems, which have the potential to substitute conventional alloys such steels and are therefore promising for a wide range of applications, e.g., overcome of the trade-off between high strength and ductility. Thus, primarily the production and resulting microstructures of HEA as well as properties have been investigated so far. Furthermore, processing is a main issue to transfer HEA systems from the laboratory to real components, e.g., for highly stressed components. Since welding is the most important joining process for metals, it is crucial to investigate the influence of welding processing on these material properties to guarantee component integrity. Welding leads to residual stresses, which significantly affect the component integrity. Only a very few studies on the effect of welding on residual stresses in HEA and MEA weld joints are available so far. Hence, the focus of this study is the residual stress formation and distribution in a CoCrFeMnNi HEA and ternary CoCrNi MEA using two different welding processes: Tungsten Inert Gas (TIG) welding and soldi-state Friction Stir Welding (FSW). As a pathway for application of HEA in this investigation for the first time residual stress analyses in realistic near-component specimens were performed. The residual stresses were determined by X-ray diffraction (XRD) on the surfaces of top and root weld side. The results were correlated with the local welding microstructures. The results show that both FSW and TIG generate significant tensile residual stresses on the weld surfaces in and transverse to the welding direction. In the case of FSW of the CoCrFeMnNi HEA, the longitudinal residual stresses are in the range of the yield strength of approx. 300 MPa in the weld zone. T2 - OVGU-Kolloquium (BMDK des IWF) CY - Online meeting DA - 19.05.2022 KW - High Entropy Alloy KW - Welding KW - Residual stresses KW - Microstructure PY - 2022 AN - OPUS4-56671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual Stress Evolution During Slot Milling for Repair Welding and WAAM of High-Strength Steel Components N2 - High-strength steels have great potential for weight optimization due to reduced wall thicknesses in many modern steel constructions. Further advances in efficiency can be achieved through the application of additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM). These technologies enable the sustainable and resource-efficient manufacturing of high-strength steels into near-net-shape, efficient structures. During the production of steel structures, unacceptable defects may occur in the weld area or in the WAAM component, e.g., due to unstable process conditions. The economical solution for most of the cases is local gouging or machining of the affected areas and repair welding. With respect to the limited ductility of high-strength steels, it is necessary to clarify the effects of machining steps on the multiaxial stress state and the high design-induced shrinkage restraint. In this context, the component-related investigations in two research projects are concerned with the residual stress evolution during welding and slot milling of welds and WAAM structures made of high-strength steels with yield strengths ≥790 MPa. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyse the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and relaxation of the specimens with the initial residual stresses induced by welding. T2 - ICRS 11 - The 11th International Conference on Residual Stresse CY - Nancy, France DA - 27.03.2022 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Reparaturschweißen KW - Gefügedegradation KW - Windenergie PY - 2022 AN - OPUS4-56708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Heat control and design-related effects on the properties and welding stresses in WAAM components of high-strength structural steels N2 - Commercial high-strength filler metals for wire arc additive manufacturing (WAAM) are already available. However, widespread industrial use is currently limited due to a lack of quantitative knowledge and guidelines regarding welding stresses and component safety during manufacture and operation for WAAM structures. In a joint research project (FOSTA-P1380/IGF21162BG), the process- and material-related as well as design influences associated with residual stress formation and the risk of cold cracking are being investigated. For this purpose, reference specimens are welded fully automated with defined dimensions and systematic variation of heat control using a special, high-strength WAAM filler metal (yield strength >790 MPa). Heat control is varied by means of heat input (200–650 kJ/m) and interlayer temperature (100–300 °C). The ∆t8/5 cooling times correspond with the recommendations of steel producers (approx. 5–20 s). Welding parameters and AM geometry are correlated with the resulting microstructure, hardness and residual stress state. High heat input leads to a lower tensile stress in the component and may cause unfavorable microstructure and mechanical properties. However, a sufficiently low interlayer temperature is likely to be suitable for obtaining adequate properties at a reduced tensile stress level when welding with high heat input. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. These complex interactions are analyzed within this investigation. The aim is to provide easily applicable processing recommendations and standard specifications for an economical, appropriate and crack-safe WAAM of high-strength steels. T2 - Third edition of the International Congress on Welding, Additive Manufacturing and associated non destructive testing CY - Online meeting DA - 08.06.2022 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2022 AN - OPUS4-56710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Influence of the WAAM process on residual stresses in high-strength steels (IIW-Doc. II-A-408-2022) N2 - High-strength fine-grain structeural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation. T2 - Intermediate Meeting of IIW Comissions II and IX CY - Online meeting DA - 17.03.2022 KW - MAG-Welding KW - Additive Manufacturing KW - Residual stresses KW - high-strength steel KW - cold cracking safety PY - 2022 AN - OPUS4-56712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hensel, J. A1 - Hälsig, A. A1 - Scharf-Wildenhain, R. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - WAAM KW - Residual Stresses KW - High-strength Steels KW - Cold cracking safety KW - Heat control KW - Wind energy PY - 2022 AN - OPUS4-56713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation T2 - 75th IIW Annual Assembly (Subcomission IIA) CY - Online meeting DA - 17.07.2022 KW - WAAM KW - Residual Stresses KW - High-strength Steels KW - Cold cracking safety KW - Wind energy KW - Heat control PY - 2022 AN - OPUS4-56715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Progress in the determination of the fatigue propagation resistance in metals and its application to fatigue assessment N2 - This plenary lecture aims at showing the progress in the experimental determination of the fatigue propagation resistance in metals and its application to fatigue assessment. In particular, different new experimental techniques are introduced, which allow a better description of the crack propagation resistance from short to long crack regime. These data can be then applied in the fatigue assessment to predict the fatigue limit and the total life of metallic components. T2 - 5th Iberian Conference on Structural Integrity CY - Coimbra, Portugal DA - 30.03.2022 KW - Crack propagation resistance KW - Cyclic R-Curve KW - Fatigue assessment KW - Kitagawa-Takahashi diagram KW - S-N diagram PY - 2022 AN - OPUS4-54603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Chemical Concentrations in the weld pool measured in situ by Laser-Induced Breakdown Spectroscopy (LIBS) during GTAW N2 - Duplex stainless steels (DSS) are frequently used, especially in applications requiring high strength combined with high corrosion resistance in aggressive media. Examples include power plant components and maritime structures. During welding of these steels, local variations in chemical composition can occur. This results in ferritization of the material and negatively affects the mechanical properties of the components. In this work, tungsten inert gas (TIG) welding experiments were performed with DSS. Chemical composition analysis was realized in situ by using Laser Induced Breakdown Spectroscopy (LIBS). We could quantitatively measure the chemical composition in the weld seam of various DSS and identify possible influences of welding parameters on the microstructure of the material. The chemical concentrations of the main alloying elements Cr, Ni, Mn on the surface of the sample during the welding process and the cooling process were measured. Mn and Ni are austenite stabilizers and their content increases during welding by using certain high alloyed filler material. T2 - IIW joint intermediate meeting Comm.I,IV,XII_2022_ON-LINE CY - Online Meeting DA - 21.03.2022 KW - LIBS KW - In situ measurement KW - Duplex stainless steel KW - TIG welding PY - 2022 AN - OPUS4-54527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Joining processes for components in hydrogen technologies: Current need and future importance N2 - This presentation gives an overview on the importance of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the three technological fields: hydrogen storage, transport and use (in terms of the emerging field of additive manufacturing). Finally, some remarks are given for necessary changes in the standardization. T2 - IIW Intermediate Meeting, Comm. II-A "Welding Metallurgy" CY - Online meeting DA - 17.03.2022 KW - Hydrogen KW - Welding KW - Research KW - Review KW - Additive manufacturing PY - 2022 AN - OPUS4-54488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Yu, Cheng-Han A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Kromm, Arne A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Determination and assessment of residual stress in laser powder bed fused stainless steel N2 - This presentation shows the effect of geometry scaling on the formation and distribution of the residual stress in laser powder bed fused 316L. T2 - BMDK - Doktorandenseminar der Otto-Von-Guericke-Universität Magdeburg CY - Online meeting DA - 26.01.2022 KW - Stainless Steel KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 AN - OPUS4-54261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Investigation of the chemical element distribution on the surface of duplex stainless steel welds using laser-induced breakdown spectroscopy (LIBS) N2 - Duplex steels are high-alloyed, stainless steels. They offer some physical advantages over other stainless steels due to the balanced phase ratio of austenite and ferrite. During welding processes, when welding fumes and vaporized material condensates, different chemical elements can accumulate on the surface of the solidified weld. Then, the formation of a protective chromium oxide layer is no longer guaranteed and pitting corrosion can occur at these places. Previous work has shown that the accumulation of manganese and chromium on the surface of the heat-affected zone of the welded high-grade steel 304L can be measured by LIBS. We present the results of the optimization of LIBS parameters for precise thickness measurements of such thin films and for depth profile measurements Therefore, we used galvanically coated copper samples with known film thicknesses. The Concentration of manganese is reduced in the weld metal. This has a high impact on the metallografic structure of the material. T2 - EMSLIBS 2021 CY - Online meeting DA - 29.11.2021 KW - LIBS KW - In situ measurement KW - Duplex stainless steel KW - TIG welding KW - Evaporation PY - 2021 AN - OPUS4-53869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post laser powder bed fusion stress relieve treatments of stainless steel 316L N2 - The laser powder bed fusion of 316L leads to the formation of large residual stress. In this presentation, different stress relieve treatments were employed to assess their potential to relax the residual stress. The residual stress was determined by X-ray and neutron diffraction. The results give insights on the range of relaxation one can obtain by employing low and high temperature heat treatments and relates the relaxation to changes in the microstructure. T2 - Online-Sitzung des Fachausschusses 13 - Eigenspannungen CY - Online meeting DA - 08.12.2021 KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing KW - Stainless Steel PY - 2021 AN - OPUS4-53947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Additive manufacturing (AM) technologies are experiencing an exceedingly rapid growth, driven by their potential through layer wise deposition for transformational improvements of engineering design, leading to efficiency and performance improvements. Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) method which permits the fabrication of complex structures that cannot otherwise be produced via conventional subtractive manufacturing methods. Nevertheless, the rapid cooling rates associated with this process results in the formation of significant and complex residual stress (RS) fields. A large body of both experimental and simulation research has been dedicated in recent years to the control and mitigation of RS in AM. In order to validate simulations with the end goal of being able to model the residual stress state in AM components and to devise strategies for their reduction during manufacturing, experimental methods need to be able to accurately determine 3D residual stresses fields in complex geometries. Several destructive and non-destructive methods can be used to analyze the RS state, the choice of which depends on the geometry and the information required. Diffraction-based methods using penetrating neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk residual stresses in complex components and track their changes following applied thermal or mechanical loads. This presentation will overview the success stories of using large scale facilities by the BAM for the characterization of residual stresses in additively manufactured metallic alloys. In particular, the study of the influence of process parameters on the residual stress state and the relaxation of these stresses through heat treatment will be presented. However there remains challenges to overcome particularly of the hypotheses underlying the experimental determination of residual stresses, which will be discussed. T2 - 10th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation – MECASENS 2021 CY - Prague, Czech Republic DA - 25.11.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - L-PBF KW - AGIL PY - 2021 AN - OPUS4-54105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Metal Additive manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) enable the fabrication of complex structures, giving rise to potential improvements in component and manufacturing efficiency. However, the processes are typically characterized by the generation of high magnitude residual stress (RS) which can have detrimental consequences for subsequent applications. Therefore, the characterization of these RS fields and the understanding of their formation and mitigation through optimized processing is crucial for the wider uptake of the technology. Due to the potential complex nature and high value of components manufactured by LPBF, it is important to have suitable characterisation methods which can determine the spatial variations of RS in a non-destructive manner. Neutron diffraction is considered to be the best suited for these requirements. However, the microstructures developed in the complex thermal cycles experience in the production can pose challenges to the ND method for RS analysis. The BAM has conducted significant research over the past years to overcome these obstacles, enabling higher confidence in the RS determined in LPBF materials by neutron diffraction. This contribution will overview some of these advancements made recently at European neutron sources including on Stress-Spec at FRM2/MLZ. T2 - MLZ User Meeting 2021 CY - Online meeting DA - 07.12.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - AGIL KW - Manufact PY - 2021 AN - OPUS4-54044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duarte, Larissa A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - The effect of the environmental conditions on the threshold against fatigue crack propagation N2 - The threshold against fatigue crack propagation (ΔKth) is a crucial parameter for the damage tolerance assessment of engineering components subjected to cyclic loading and it is composed by two distinct components, one intrinsic, dependent on the elastic material properties and the lattice type, and one extrinsic, related to the occurrence of crack closure effects. An important issue is that several factors can influence ΔKth and, in general, the fatigue crack propagation behavior. In this work, the influence of the experimental procedure, air humidity and test parameters on da/dN-ΔK data has been investigated. Results are discussed with their potential causes and consequences on the calculations of the residual lifetime. T2 - Conference Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Fatigue crack propagation threshold KW - Crack closure effect KW - Experimental procedure KW - Environmental conditions PY - 2021 AN - OPUS4-53770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Werner, Tiago T1 - Estimation of the Kitagawa-Takahashi diagram by cyclic R-curve analysis N2 - The Kitagawa-Takahashi (KT) diagram is a proven concept for describing the fatigue limit in presence of a defect or crack. It can be determined empirically with great experimental effort. It can also be estimated by means of the El Haddad relationship if the endurance limit and the long fatigue crack propagation threshold are available in reasonable accuracy. A third option is the determination using the cyclic R-curve, which describes the dependency of the fatigue crack propagation threshold on the crack growth at the short crack propagation stage. This can be experimentally determined using a closure-free initial pre-crack. It can then be applied to the determination of crack arrest for a given applied load and a given defect or crack size. Compared to the other two methods mentioned above, this option has considerable advantages: It can be applied to any component and any stress ratio. It allows the treatment of multiple cracks and provides estimations of the S-N curve in the finite life regime as well as at the endurance limit. Compared to the empirical determination of the KT diagram, the experimental effort is significantly lower and compared to the El Haddad approach it avoids problems such as the use of non-conservative long fatigue crack propagation thresholds (when the conventional load reduction method is applied to materials prone to corrosion) and the mathematical predetermination of the curve shape. The work introduces the method and provides a critical discussion as well as quantitative comparison between the different methods. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Fatigue life KW - Endurance limit KW - Kitagawa-Takahashi diagram KW - Cyclic R-curve PY - 2021 AN - OPUS4-53778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Blasón, Sergio A1 - Madia, Mauro A1 - Kruse, Julius A1 - Benedetti, M. T1 - Determination of fatigue crack propagation thresholds using small scale specimens N2 - The damage tolerance approach is widely used in the design and estimation of inspection intervals of safety-relevant metallic components subject to fatigue loading. The approach relies on the knowledge of the fatigue crack propagation characteristics, wherein a relevant role is played by the fatigue crack propagation threshold. Nevertheless, the use of material data determined by testing on conventional specimens is not straightforward in case of thin-walled components such as turbine-blades or additively manufactured parts, in which the local variation of material properties in highly stressed regions must be considered. In these cases, the possibility of investigating the fatigue crack propagation properties on a limited portion of material is crucial. For this purpose, a new test methodology has been developed for small-scale specimens which allows the determination of the intrinsic fatigue crack propagation threshold and the near-threshold regime. The use of small-scale specimens poses a challenge to the applicability of the method to metallic materials, especially regarding the limitations on material strength and requirements for the application of the linear elastic fracture mechanics concepts. These aspects are discussed in this work. Furthermore, the application on the high strength steel S960QL is presented, along with a comparison with data determined by conventional testing. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Small scale testing KW - Fatigue crack growth KW - Threshold regime PY - 2021 AN - OPUS4-53781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Kruse, Julius A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Correlation between quasistatic und fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion N2 - In order to find a resource efficient approach for the fatigue lifetime prediction of laser powder bed fusion (L-PBF) processed AlSi10Mg material, results of tensile and fatigue tests were compared. The specimens were manufactured with three different L-PBF machines and studied in different heat treatment conditions (as-built, annealed, T6 heat treated). The investigations showed that the high attainable tensile strength properties after the manufacturing process are not beneficial in the high cycle fatigue (HCF) regime. In contrast, the applied heat treatments, which lead typically to a decrease of ultimate tensile strength, improved dramatically the fatigue behavior. Additionally, a clear correlation between the elongation at fracture and HCF resistance has been found for individual heat treatment conditions. This empiric relationship provides an estimation of the fatigue resistance in the presence of material defects and can be implemented in part and process approvals. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - AlSi10Mg KW - Tensile properties KW - Fatigue properties PY - 2021 AN - OPUS4-53792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties N2 - Alloy 36 (1.3912), also known as “Invar”, is an alloy with 36% nickel. It was developed in 1897 by Guillaume and stands out for its very low thermal expansion coefficient. It is classified as a difficult-to-cut material and is commonly used for the production of fiber-reinforced composites in the field of mold construction. Additive manufacturing (AM) offers many economic advantages regarding the repair, modification and manufacture of entire components. Subsequent machining of the AM components is necessary to account for complex structures, final contours or defined surfaces. This is usually done using a tool with a geometrically defined cutting edge, i.e., milling processes. Surface integrity is determined by metallurgical (e.g., microstructure of the subsurface), topological (e.g., surface defects, roughness) and mechanical (e.g., residual stresses) factors, which is crucial in terms of component safety and performance. Modern, hybrid cutting processes, such as ultrasonic-assisted milling (US), provide potentially improvement of the cutting situation of these components. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr and Nb up to a maximum of 1 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Part II focusses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. The results show a significant positive influence of ultrasonic assistance on the resulting cutting force of both materials. The modification with 1% Ti shows a positive influence on the surface integrity, as the roughness of the conventional machining processes is lower compared to the initial alloy, which has to be confirmed in further experiments. T2 - IIW C-II Intermediate meeting CY - Online meeting DA - 17.03.2022 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Plasma-Transferred-Arc KW - Surface integrity KW - Alloy 36 KW - Additive manufacturing PY - 2022 AN - OPUS4-54910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Dixneit, Jonny A1 - Kannengießer, Thomas A1 - Vollert, F. A1 - Gibmeier, J. T1 - Phase Transformation and Strain Evolution during Welding of Low Transformation Temperature Alloys N2 - In this work, the phase and strain formation in multipass welding of LTT gas metal arc welds were observed under realistic restraints by means of time resolved angular-dispersive synchrotron X-ray diffraction at the High Energy Materials Science beamline HEMS at PETRA III (DESY), Hamburg Germany. It was shown that the strain evolution during cooling correlates with the amount of martensite formed. Both, the strain of martensite and austenite are affected during phase transformation. Even though dilution processes limit the LTT effect in the root compared to the top layer, the strains are significantly reduced compared to the conventional weld metal. The observed effects are found for both Ni and Mn based LTT filler metals regardless of their respective Ms temperature. T2 - 2nd International Conference on Advanced Joining Processes AJP 2021 CY - Sintra, Portugal DA - 21.10.2021 KW - Welding KW - Residual Stress KW - In-situ diffraction KW - Synchrotron PY - 2021 AN - OPUS4-53609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - In situ investigation of phase distribution and weld solidification in duplex stainless steels using laser-induced breakdown spectroscopy (LIBS) N2 - Welding processes of duplex stainless steels cause an unbalanced austenite (γ)/ferrite (δ) ratio due to high cooling rates and changes in chemical composition. That causes a degradation of mechanical properties and corrosion resistance. In situ monitoring of the weld pool is to be realized with the help of laser-induced breakdown spectroscopy (LIBS). A major advantage of this technique is the highly accurate time and spatially resolved measurement of the chemical composition during welding. Previous research has established that the LIBS method is suitable to detect chemical elements during welding and to show a distribution of selected elements. Chemical composition in the WM and HAZ can now be quantified using calibration curves generated by certified reference materials (CRM). Furthermore, a cooling rate can be plotted against the measured electron temperature. T2 - 2nd International Conference on Advanced Joining Processes CY - Sintra, Portugal DA - 21.10.2021 KW - LIBS KW - In situ measurement KW - WRC 1992 diagram KW - duplex stainless steel KW - TIG welding PY - 2021 AN - OPUS4-53613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Diese, Marcel A1 - Rhode, Michael A1 - Schroepfer, Dirk A1 - Richter, Tim T1 - Characterization of cracking phenomena in TIG welds of high and medium entropy alloy N2 - Multi-element systems with defined entropy (HEA - High Entropy Alloy or MEA - Medium Entropy Alloy) are rather new material concepts that are becoming increasingly important in materials research and development. Some HEA systems show significantly improved properties or combinations of properties, e.g., the overcome of the trade-off between high strength and ductility. Thus, the synthesis, the resulting microstructures, and properties of HEA have been primarily investigated so far. In addition, processing is crucial to achieve a transfer of potential HEA/MEA materials to real applications, e.g. highly stressed components. Since fusion welding is the most important joining process for metals, it is of vital importance to investigate the weldability of these materials. However, this has rarely been the subject of research up to date. For that reason, in this work the weldability depending on the surface preparation of a CoCrFeMnNi-HEA and a CoCrNi-MEA for TIG welding is investigated. The fusion welding of longer plates is described here for the first time for the CoCrNi alloy. The welds of both materials showed distinct formation of cracks in the heat affected zone (HAZ). Optical and scanning electron microscopy analysis clearly confirmed an intergranular fracture topography. But based on the results, the crack mechanism cannot be conclusively clarified as either a liquid metal embrittlement (LME) or hot cracking like liquid film separation occurred. T2 - 2nd International Conference on Advanced Joining Processes CY - Online meeting DA - 21.10.2021 KW - High Entropy Alloy KW - TIG welding KW - Cracking PY - 2021 AN - OPUS4-53607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Treutler, K. A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Nickel-iron-alloy modification to enhance additively welded microstructure for subsequent milling N2 - The aerospace industry uses nickel-iron-alloys to create moulding tools for composite materials because of the low coefficient of thermal expansion. These tools have a large-sized and complex structure, making them cost-intensive and difficult to manufacture. Therefore, the focus is set on additive manufacturing, which can additionally enable the repair of components in order to eliminate local defects. However, the process usually results in a heterogeneous microstructure and anisotropic mechanical properties. As there is a high demand for a precise and exact fit of the precision moulds and thus the surface quality, the welded components must be subsequently machined. Nickel-iron alloys are difficult to machine and an inhomogeneous microstructure also leads to unstable cutting forces. Consequently, a refinement and homogenisation of the microstructure morphology is achieved through specific alloy modifications in order to stabilise and improve the subsequent machining process. Studies on the refinement of FeNi 36 based on vacuum arc melting furnaces are used as a starting point. Therefore, titanium and niobium are chosen as modification elements with a maximum 1 % weight percent and are added to nickel-iron base alloy. The elements are alloyed and build-up welded by using plasma-transferred-arc welding. The resulting microstructure morphology of the welded wall structure and the machining properties are then determined. Furthermore, the influence on the coefficient of thermal expansion is investigated in connection with the modification and the welding process itself. It can be shown that even small amounts of niobium have a significant influence on the structural morphology of the welded layers during plasma-transferred-arc welding. T2 - 2nd international Conference on Advanced Joining Processes 2021 CY - Sintra, Portugal DA - 21.10.2021 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Nickel-iron-alloy KW - Additive manufacturing KW - Plasma transferred arc welding PY - 2021 AN - OPUS4-53635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Adequate repair concepts for high-strength steel weld joints considering design influences N2 - The sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of design and welding-induced residual stress can lead to crack formation and ultimately to component failure, particularly in interaction with the degradation of the microstructure and mechanical properties high-strength steels during the repair process. In this context, component-related investigations (FOSTA-P1311/IGF-Nr. 20162 N) focusing on welding residual stress evolution during local thermal gouging and rewelding of S500MLO and S960QL are carried out using in-situ digital image correlation (DIC) and ex-situ X-ray diffraction methods (XRD). Therefore, self-restrained specimens were systematically gouged and rewelded with defined welding heat control (heat input, working temperature) and parameters. By means of structural mechanics calculations, geometries of self-restrained specimens were identified, that represent defined rigidity conditions of repair welds of real components. It could be shown that with increasing restraint intensity significantly higher residual stresses occur in the weld metal and heat affected zone. Furthermore, it revealed that the transverse stresses along the weld seam decrease at the weld seam ends leading to different stress state during gouging and welding. XRD analysis of the local residual stresses after cooling to RT longitudinal and transverse to the weld direction showed a good comparability with global DIC analyses. T2 - Bachelor-, Master-, Doktoranden-Kolloquium der Otto-von-Guericke Universität Magdeburg CY - Magdeburg, Germany DA - 20.10.2021 KW - High-strength steels KW - Repair welding KW - X-ray diffraction KW - Digital image correlation PY - 2021 AN - OPUS4-53640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Kannengießer, Thomas T1 - The influence of hydrogen on strain-induced martensite formation and cracking in SMSS investigated simultaneously by ED-XRD and by X-ray radiography N2 - Die Ergebnisse von in-situ Experimenten am Berliner Elektronenspeicherring (BESSY II) werden vorgestellt. Es wurden Zugversuche an wasserstoffbeladenen und wasserstofffreien supermartensitischen Proben durchgeführt und Diffraktionsspektren und radiographische Bilder aufgenommen. Die energiedispersive Röntgendiffraktion ermöglichte dabei in-situ die dehnungsinduzierte Phasenumwandlung von Restaustenit zu Martensit zu beobachten. Die Radiographiebilder der zerreisenden Probe gaben Einblicke in das Bruchverhalten in Abhängigkeit vom Wasserstoffgehalt. T2 - 4th in-situ Workshop 2021 @ 2nd International Conference on Advanced Joining Processes CY - Sintra, Portugal DA - 21.10.2021 KW - Wasserstoffdegradation KW - Snergiedispersive Röntgendiffraktion KW - Zugversuch KW - Röntgenradiographie KW - Supermatensitischer Stahl PY - 2021 AN - OPUS4-53697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - WAAM process influences on local microstructure and residual stresses in high-strength steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. Due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the special microstructure of high-strength steels is sensitive to cold cracking. For this reason, process- and material-related influences, as well as the design effects on residual stress formation, are being investigated in a project funded by the AiF (FOSTA P1380/IGF 21162 BG). This study focuses on determining the interactions between heat control during WAAM process, resulting hardness, microstructure, and residual stresses, analyzed by X-ray diffraction. Welding experiments using geometrically similar AM specimens show that, with regard to the heat input, the energy per unit length in particular leads to significantly affected cooling times and microstructures and causes pronounced localized effects in terms of residual stresses in the upper weld beads. T2 - 46th MPA-Seminar CY - Stuttgart, Germany DA - 12.10.2021 KW - Wire Arc Additive Manufacturing KW - High-strength structural steels KW - Vickers hardness KW - Residual stresses PY - 2021 AN - OPUS4-53567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Joining Processes in Hydrogen Technologies - Current need and future R&D activites, a review N2 - This study gives an overview on the important field of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the different technological field of hydrogen generation, storage, transport and use. In addition, the emerging field of additive manufacturing is included. Finally, some remarks are given for necessary changes in the standardization and its challenges. T2 - 46th Seminar - Additive Manufacturing, Hydrogen, Energy, Integrity CY - Online meeting DA - 12.10.2021 KW - Hydrogen KW - Joining process KW - Welding KW - Review KW - Research and Development PY - 2021 AN - OPUS4-53554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Kelleher, Joe A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post laser powder bed fusion stress relieve treatments of stainless steel 316L N2 - The formation of high magnitude residual stresses is inherent in laser powder bed fused processed austenitic steel 316L. Post-process heat treatments to relieve these stresses are necessary. In this study, heat treatment temperatures of 450°C, 800°C and 900°C were applied in order to avoid excessive sensitization. This temperature range thereby encompassed the upper and lower bounds for stress relieving treatment of this material. The residual stresses were determined by neutron diffraction and the evolution of the microstructure was monitored using scanning electron microscopy and electron backscattered diffraction. The results show that a full relaxation of the residual stresses is achieved when applying 900°C for 1 hour, which seems to be closely related to the dissolution of the subgrain solidification cellular structure. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - Residual Stress KW - Additive Manufacturing KW - Steel PY - 2021 AN - OPUS4-52709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duarte, Larissa A1 - Zerbst, Uwe A1 - Madia, Mauro T1 - Investigation on the influence of different testing methods and parameters on the determination of fatigue crack growth data N2 - The correct determination of fatigue crack propagation data is of great importance for the damage tolerance design of engineering components, especially with regard to the calculation of residual lifetime and the establishment of inspection intervals. The fatigue crack propagation threshold Δ𝐾th, in this respect, is a crucial input parameter for simulating crack growth, since it corresponds to the stress intensity factor range at which a non-growing crack starts to propagate. However, the experimental determination of Δ𝐾th, as well as its application, is still confronted with few issues related among others to the load ratio (R) dependency of Δ𝐾th, the testing procedure, and environmental effects. These can lead to large scatter and significant errors in the prediction of component failure. In this context, the use of the intrinsic fatigue crack propagation threshold Δ𝐾th,eff in component assessment is a promising alternative, since it does not depend on a number of factors that affect Δ𝐾th, but only on the elastic properties (𝐸-modulus) and the lattice (Burger’s vector ‖𝑏‖) of the material. The aim of the present work is therefore to investigate different experimental procedures for the determination of Δ𝐾th,eff, namely: (a) conventional load reduction (LR) procedures, (b) the 𝐾max procedure and (c) compression pre-cracking load reduction and constant amplitude (respectively CPLR and CPCA) methods. Furthermore, the determination of Δ𝐾th has been carried out varying some testing parameters, such as test frequency, Δ𝐾 at the beginning of the crack propagation test (Δ𝐾0) and stress ratio (R). The results are statistically analyzed and a discussion about the use of Δ𝐾th and Δ𝐾th,eff for the component fatigue assessment is presented. T2 - 6th. International Virtual Conference of Engineering Against Failure CY - Online meeting DA - 23.06.2021 KW - Crack closure KW - Damage tolerance assessment KW - Residual lifetime KW - Intrinsic fatigue crack propagation threshold PY - 2021 AN - OPUS4-52899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Short fatigue crack propagation in additively manufactured stainless steel 316L N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - AM KW - Cyclic R-Curve KW - Fatigue Crack Propagation PY - 2021 AN - OPUS4-52587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Process-related influences and correlations in wire arc additive manufacturing of high-strength steels N2 - High-strength fine-grained structural steels have great potential for weight-optimized, efficient structures in many modern steel applications. Further advances in efficiency can be achieved through additive manufacturing and bionic design. Commercial high-strength filler materials for wire arc additive manufacturing (WAAM) are already provided by the consumable producers. Today, application would be strictly limited due to absence of quantitative findings or any guidelines for the industry regarding welding-related stresses and component safety during manufacturing and service. Hence, process- and material-related influences and design-related restraint conditions associated with formation of residual stresses and cold cracking risk are investigated. The aim is the accessibility of special WAAM self-restraining cold cracking tests and easy applicable processing recommendations, enabling an economical, fit-for-purpose and crack-safe WAAM of high-strength steels. This first study focuses on determination of interactions between WAAM process parameters, resulting layer geometry, microstructure and residual stresses, analyzed via X-ray diffraction. Defined reference specimens are automated welded using a special WAAM solid wire (yield strength >820 MPa). Geometric properties can be specifically adjusted by wire feed and welding speed, but cannot be varied arbitrarily, since a high heat input causes local overheating, inadmissible changes of microstructure and mechanical properties, defects and comparable high tensile residual stresses. T2 - 22. Werkstofftechnischen Kolloquium der TU Chemnitz CY - Online meeting DA - 24.03.2021 KW - Additive Manufacturing KW - High-strength steel KW - Residual stresses PY - 2021 AN - OPUS4-53328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Consideration of design influences to provide adequate repair concepts for high-strength steel weld joints in offshore support structures N2 - The sustainable and resource-efficient production of offshore wind turbines requires the use of modern high-strength fine-grained structural steels (Martin and Schroeter, 2005). This applies to wind turbines in terms of increasing turbine sizes as well as to maintenance and installation vessels and equipment (Ummenhofer et al., 2013). Without the demanded high load-bearing capacities and boom lengths, the economic realization of these goals would be inconceivable. During the assembly of high-strength steel structures, unacceptable defects can occasionally be found in the weld area, although the welding process was executed in accordance with the specifications. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Corresponding standards hardly provide any information on adequate repair concepts, and there is no uniform scientific data on which to base such concepts. This applies particularly to the consideration and optimization of welding-induced stresses due to the high shrinkage hindrance of the gouging grooves and degradation of the adjacent microstructures by gouging and re-welding. The result, especially in the case of high-strength steel grades, are frequently recurring imperfections as well as a missing consideration of the additionally induced welding stresses in the design of the structure. In this context, at BAM component-relevant investigations focused on welding residual stress evolution and microstructural degradation during repair of weld joints due to local thermal gouging and re-welding are carried out within the scope of a FOSTA project (P1311, IGF 20162N). In this study, several relevant findings are discussed based on examples of structural engineering focusing on mechanical-technological properties and residual stresses, for instance found by (Schasse, 2017). Also experimental and numerical work as conducted by (Wongpanya, 2008) and weld tests under defined shrinkage restraint in special weld test-setups for research projects, e. g. FOSTA-P922 (Kannengiesser and Schroepfer, 2015) and P1011 (Kannengiesser and Schroepfer, 2017) have shown that an optimization of the welding-induced stresses of high-strength structural steels is specifically achievable by means of adapted heat control concepts (Schroepfer, 2017). The present research involves systematic investigations of influences of shrinkage restraint, the number of repair cycles and heat control during repair welding of the relatively new developed offshore-relevant high-strength steel S500MLO (EN 10225-1). For the quantification of the shrinkage restraint of weld joints, the concept of restraint intensity established by (Satho et al., 1973) was applied analogous to recent research, e. g. (Schwenk et al., 2008). By means of structural mechanics calculations, geometries of self-strained specimens were identified, that represent different defined rigidity conditions of repair welds of real components, cf. Fig. 1. It could be shown that with increasing weld joint restraint intensity significantly higher residual stresses in the weld metal and heat affected zone up to 80 % of the nominal yield strength occur, cf. Fig. 2. In relation to existing results, it has been shown that a safe repair of such welds can only be achieved by means of appropriate repair concepts and heat control taking the high welding stresses and special microstructures of high-strength steels into account. Finally, the aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines, especially for SMEs, in order to avoid damage and, in most cases, expensive reworking and to improve the full utilization of the potential of high-strength steels. T2 - Wind Energy Science Conference 2021 CY - Online meeting DA - 25.05.2021 KW - High-strength structural steels KW - Welding KW - Repair KW - Residual stresses KW - Restraint PY - 2021 AN - OPUS4-53319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Adequate repair concepts for high-strength steel weld joints for offshore support structures considering design influences N2 - The sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process [1]. Corresponding standards hardly provide any information on adequate repair concepts, and there is no uniform scientific data on which to base such concepts. In this study, several relevant findings are discussed based on examples of structural engineering focusing on mechanical-technological properties and residual stresses, e.g. [1]. Further experimental and numerical work as conducted by [2] and weld tests under defined restraint conditions in special weld test-setups [3] show that an optimization of the welding-induced stresses of high-strength structural steels is achievable by means of an adapted heat control. The present research involves systematic investigations of influences of shrinkage restraint, the number of repair cycles and heat control during repair welding of a recently available high-strength offshore steel S500MLO (EN 10225-1). A quantification of the shrinkage restraint of repair weld joints is achievable by means of restraint intensity concept [4], analogous to previous studies [5]. Using structural mechanics calculations, geometries of self-restrained specimens are identified representing different defined rigidity conditions of repair welds considering actual high-strength steel components. Welding experiments with DIC analyses (digital image correlation) of the occurring strains during welding and XRD analyses (X-ray diffraction) of the resulting residual stresses after welding and cooling show increasing transient loads and significantly elevated residual stress profiles in the weld area with increasing restraint intensity. Especially in the heat affected zone, tensile residual stresses of up to 80 % of the nominal yield strength occur when welding under increased restraint conditions. In relation to the presented existing results, this indicates that a safe repair welding is primarily achievable by means of appropriate repair concepts and heat control taking into account the high welding stresses and special microstructures of high-strength steels. Finally, the aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines, especially for SMEs, in order to avoid damage and, in most cases, expensive reworking and to improve the full utilization of the potential of high-strength steels. T2 - 74th IIW Annual Assembly and International Conference, C II-A CY - Online meeting DA - 07.07.2021 KW - High-strength structural steels KW - Welding KW - Repair KW - Residual stresses KW - Restraint PY - 2021 AN - OPUS4-53320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - First measurements of chemical composition changes during cooling of duplex stainless steel during TIG welding using laser-induced breakdown spectroscopy (LIBS) N2 - Duplex stainless steels (DSS) are frequently used, especially in applications requiring high strength combined with high corrosion resistance in aggressive media. Examples include power plant components and maritime structures. During welding of these steels, local variations in chemical composition can occur. This results in ferritization of the material and negatively affects the mechanical properties of the components. In this work, tungsten inert gas (TIG) welding experiments were performed with DSS. Chemical composition analysis was realized in situ by using Laser Induced Breakdown Spectroscopy (LIBS). The aim of the work is to quantitatively measure the chemical composition in the weld seam of various DSS and to identify possible influences of welding parameters on the microstructure of the material. The chemical concentrations of the main alloying elements Cr, Ni, Mn on the surface of the sample during the welding process and the cooling process were measured. Mn and Ni are austenite stabilizers and their content increases during welding by using certain high alloyed filler material. Spectra were recorded every 1.3 s at a spacing of approximately 2 mm. During the cooling process the location of the measurement was not changed. The LIBS method is proofed to be suitable for the quantitative representation of the chemical compositions during the welding process. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - LIBS KW - In situ measurement KW - Duplex stainless steel KW - TIG welding PY - 2022 AN - OPUS4-55922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Han, Ying A1 - Kruse, Julius A1 - Madia, Mauro A1 - Skrotzki, Birgit T1 - High cycle fatigue behavior of alloy EN AW-2618A N2 - The presentation shows the results of high cycle fatigue (HCF) tests from the aluminium alloy EN AW-2618A. This study investigates the mean stress influence in the T61 condition and the effect of overaging. For this purpose, axial HCF tests were carried out at room temperature and different stress ratios (R=-1, R=0.1) as well as with overaged conditions (T61+10h@230°C, T61+1000h@230°C). After completion of the tests, the fracture surfaces were examined to study crack initiation. T2 - The 18th International Conference on Aluminium Alloys CY - Toyama, Japan DA - 04.09.2022 KW - High Cycle Fatigue KW - Aluminium Alloy KW - EN AW-2618A PY - 2022 AN - OPUS4-55865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Mente, Tobias A1 - Kannengießer, Thomas A1 - Kardjilov, N. T1 - The Debye-Waller Factor for Temperature Distribution Determination in NBEI Experiments: A Case Study for GTAW N2 - In Neutron-Bragg-Edge Imaging (NBEI) in situ experiments, we studied the phase transitions in martensitic steel sheets during butt-welding. Gas tungsten arc welding was used with a motorized torch allowing automated weldments. The austenitization in the heat affected zone underneath the welding head could be clearly visualized. Also, the retransformation into the martensitic phase upon cooling. However, we observed an unexpected additional change in transmission at λ = 0.44 nm that is at a wavelength larger than the wavelength of the Bragg edges of both the martensitic and austenitic phases. We attribute this change to the Deybe-Waller-Factor that describes the temperature dependence of coherent scattering at a crystal lattice. With help of temperature field simulations that were calibrated by the reading of anattached thermo couple during welding, we could show that the Debye-Waller factor can produce an additional image contrast. T2 - SNI 2022 CY - Berlin, Germany DA - 05.09.2022 KW - Welding KW - Debys-Waller-Factor KW - Neutron Imaging PY - 2022 AN - OPUS4-55630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Alloy modification for additive manufactured Ni alloy components Part I: Effect on microstructure and hardness N2 - Alloy 36 (1.3912), also known as “Invar”, is an alloy with 36% nickel. The alloy has a remarkably low thermal expansion coefficient in certain temperature ranges. Therefore, it is used in applications in which dimensional stability is critical, such as moulding tools for composite materials in aerospace and automotive applications. Moreover, increasingly complex structures and the optimisation of resource efficiency also require additive manufacturing steps for the production or repair of components. Additively manufactured components have a heterogeneous microstructure and anisotropic mechanical properties. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr and Hf up to a maximum of 0.33 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Part II focusses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. The results show that PTA welding cause numerous finely distributed precipitates with high silicon content. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy modification KW - Alloy 36 KW - Additive manufacturing PY - 2022 AN - OPUS4-55439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -