TY - CONF A1 - Kelly, U. A1 - Richter, S. A1 - Schladitz, K. A1 - Scheuerlein, C. A1 - Redenbach, C. A1 - Wolf, F. A1 - Ebermann, P. A1 - Lackner, F. A1 - Schoerling, D. A1 - Meinel, Dietmar T1 - Nb3Sn wire shape and cross sectional area inhomogeneity in Rutherford cables N2 - During Rutherford cable production the wires are plastically deformed and their initially round shape is distorted. Using X-ray absorption tomography we have determined the 3D shape of an unreacted Nb3Sn 11 T dipole Rutherford cable, and of a reacted and impregnated Nb3Sn cable double stack. State-of-theart image processing was applied to correct for tomographic artefacts caused by the large cable aspect ratio, for the segmentation of the individual wires and subelement bundles inside the wires, and for the calculation of the wire cross sectional area and shape variations. The 11 T dipole cable cross section oscillates by 2% with a frequency of 1.24 mm (1/80 of the transposition pitch length of the 40 wire cable). A comparatively stronger cross sectional area variation is observed in the individual wires at the thin edge of the keystoned cable where the wire aspect ratio is largest. T2 - 13th European Conference on Applied Superconductivity, EUCAS 2017 CY - Geneva, Switzerland DA - 17.09.2017 KW - X-ray computer tomography KW - Image processing KW - Superconducting KW - CERN KW - µCT PY - 2017 AN - OPUS4-43493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -