TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Borehole integrity of austenitized and annealed pipe steels suitable for carbon capture and storage (CCS) N2 - Properties of pipe steels for CCS (carbon capture and storage) technology require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). The influence of austenitzing in heat treatment routines of two different injection pipe steels (1.4034, X46Cr13 and 1.4021, X20Cr13) was evaluated. Steel coupons were austenitized at different temperatures (900- 1050 °C) for different lengths of time (30-90 min) before quenching and annealing prior to long term corrosion experiments (60°C, 100 bar, artificial brine close to a CCS-site in the Northern German Basin, Germany). In general, fewer pits are found on X46Cr13. Comparing steels with 13% chromium each the higher carbon content of X46Cr13 (0.46% C) results in a lower number of pits compared to X20Cr13 (0.20% C). It is found that neither the carbon content of the steels nor austenitizing temperature has much influence, but local corrosion behaviour is most susceptible towards austenitzing time. T2 - International Conference on Future Environment and Energy CY - Pattaya, Thailand DA - 23.01.2016 KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Austenitizing PY - 2017 SP - Article A0005, 213 EP - 219 AN - OPUS4-41854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Potential of martensitic stainless steel X5CrNiCuNb 16-4 as pipe steel in corrosive CCS environment N2 - Pipe steels suitable for carbon capture and storage technology (CCS) require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). X5CrNiCuNb16-4 has been proven to be sufficient resistant in corrosive environments, but shows rather unusual corrosion behaviour in CCS environment. Therefore differently heat treated coupons of 1.4542 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. Additionally fatigue tests were performed via push-pull tests with a series of 30 specimens was tested at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). Best corrosion resistance in the liquid phase is achieved via normalizing prior to exposure and hardening+tempering at 670 °C leads to lowest corrosion rates in the supercritical phase. With no regard to atmosphere discontinuously ellipsoidal surface corrosion regions appear after exposure of 4000 h and more. The endurance limit of X5CrNiCuNb16-4 measured in air is reduced by more than 50% when exposed to CCS environment (maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa) The scatter range TN = 1:34 is disproportionately large contributing to an overall unusual corrosion behaviour. KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment KW - Fatigue KW - Endurance limit PY - 2017 U6 - https://doi.org/10.18178/ijesd.2017.8.7.998 SN - 2010-0264 VL - 8 IS - 7 SP - 466 EP - 473 AN - OPUS4-41863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -