TY - JOUR A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Niobium carbide for wear protection - tailoring its properties by processing and stoichiometry N2 - Niobium carbide is a hardly explored carbide but its functional profile shows a high potential for wear protection and tribological applications, which are currently dominated by tungsten carbide. Surprisingly little information is available on niobium carbide (NbC). Niobium carbide can be either synthesized by carbothermal conversion of Nb2O5 or be metallurgically grown and leached out. Furthermore, NbC hardmetal grades can be bonded by all known metallic binders and processed and sintered in exactly the same way as WC-based hardmetals. Niobium is today largely available. NbC can be efficiently produced, provides comparably low friction in many relevant tribo-contacts and displays low wear. NbC and Nb2O5 have so far no REACH classification related to human toxicology and are not listed as substances of very high concern contrary to WO3 and Co3O4. This contribution demonstrates the key characteristics of NbC and discusses its sustainability and reliable value chain. KW - niobium carbide KW - wear KW - machining PY - 2016 U6 - https://doi.org/10.1016/j.mprp.2015.12.010 SN - 0026-0657 VL - 71 IS - 4 SP - 265 EP - 272 PB - Elsevier Ltd. AN - OPUS4-37150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burbank, John A1 - Woydt, Mathias T1 - Friction and wear reductions in slip-rolling steel contacts through pre-conditioned chemical tribofilms from bismuth compounds N2 - Downsizing in mechanical systems requires effective lubrication strategies to ensure that increased contact stresses do not cause critical material failure during operation. Additionally, eco-toxicological consideration are becoming increasingly important. In this regard, the goal of this investigation is to transfer the running-in phase into the final step of the mechanical finishing process through the targeted pre-conditioning of novel, high toughness steel bearings without thermo-chemical treatments and compare these to conventional, case-hardened Steels. Pre-conditioning involved implementation of the ecologically sustainable, bismuth-based additives to generate chemically reactive tribofilms on slip-rolling contacts by using a formulation with a high concentration of tribofilm forming additive. Generated tribofilms were analyzed by Raman spectroscopy to elucidate their molecular composition and, ultimately, determine the reaction mechanisms of bismuth-based tribofilm formation. Tribofilm-protected samples were subjected to slip-rolling endurance testing in a factory fill engine oil without pre-conditioning additives to determine the influence of pre-condition tribofilms on friction behavior and wear performance. It was observed that pre-conditioned tribofilms from the bismuth-based additives were able to yield lower coefficients of friction (COF) and profilometric wear coefficients than for Steels without pre-conditioning. Moreover, COF values under mixed/boundary conditions approaching and even less than 0.04 were achieved, thereby rivaling DLC-coated alloy equivalents. KW - tribofilm KW - bismuth KW - carbamate KW - slip-rolling KW - friction KW - wear PY - 2016 U6 - https://doi.org/doi:10.1016/j.wear.2016.04.004 SN - 0043-1648 VL - 360-361 SP - 29 EP - 37 PB - Elsevier B.V. AN - OPUS4-35919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -