TY - JOUR A1 - Müller, U. A1 - Miccoli, Lorenzo A1 - Fontana, Patrick T1 - Development of a lime based grout for crack repair in earthen constructions N2 - The study presents the results from the development of a grouting material based on hydrated lime with addition of pozzolana, which is referred to as hydraulic lime, suitable for the repair of cracks in a variety of earthen building techniques. The goal was to develop a material also compatible with earthen structures exposed to dynamic loads. The grouting mortar was designed to be adaptable in strength properties and at the same time to have sufficient robustness for preparation and use on the construction site. Results showed a satisfactory performance of the grout concerning fresh and hardened mortar properties as well as injectability. KW - Earthen construction KW - Lime based grout KW - Cracks grouting KW - Rheology KW - Strength KW - Adhesion PY - 2016 U6 - https://doi.org/10.1016/j.conbuildmat.2016.02.030 SN - 0950-0618 VL - 110 SP - 323 EP - 332 PB - Elsevier AN - OPUS4-37064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Densification and tribological profile of niobium oxide N2 - The origin of the intrinsic wear resistance of NbC-based materials is investigated through an assessment of the tribological performance of fully dense, crack-free spark plasma sintered Nb2O5 (here as a reduced polymorph: monoclinic Nb12O29 or NbO2.416). The most likely wear mechanism on NbC is the tribo-oxidation to Nb2O5. The unlubricated (dry) friction and wear behavior of alumina (99.7%) mated against rotating disks of crack-free niobium(V)oxide (Nb2O5) under unidirectional sliding (0.03–10m/s; 22°C and 400°C) and oscillation (f=20 Hz, dx=200 mm, 2/50/98% rel. humidity, n=105/106 cycles) will be presented. The microstructure and mechanical properties of the crack-free Nb2O5 are assessed. The tribological data obtained are benchmarked with different NbC grades, ceramics, cermets and thermally sprayed coatings. KW - Friction KW - Wear KW - Nb2O5 KW - Nb12O29 KW - Niobium oxide KW - Strength KW - Modulus KW - High temperatures PY - 2016 U6 - https://doi.org/10.1016/j.wear.2016.02.003 SN - 0043-1648 VL - 352-353 SP - 65 EP - 71 PB - Elsevier B.V. AN - OPUS4-35805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni T1 - Brittle Materials in Mechanical Extremes N2 - The goal of the Special Issue “Brittle Materials in Mechanical Extremes” was to spark a discussion of the analogies and the differences between different brittle materials, such as, for instance, ceramics and concrete. Indeed, the contributions to the Issue spanned from construction materials (asphalt and concrete) to structural ceramics, reaching as far as ice. The data shown in the issue were obtained by advanced microstructural techniques (microscopy, 3D imaging, etc.) and linked to mechanical properties (and their changes as a function of aging, composition, etc.). The description of the mechanical behavior of brittle materials under operational loads, for instance, concrete and ceramics under very high temperatures, offered an unconventional viewpoint on the behavior of brittle materials. This is not at all exhaustive, but a way to pave the road for intriguing and enriching comparisons. KW - Microcracking KW - Ceramics KW - Concrete KW - Asphalt KW - Mechanicalproperties KW - Microstructure KW - Strength PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-514558 VL - 13 IS - 20 SP - 4610 PB - MDPI CY - Basel AN - OPUS4-51455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -