TY - JOUR A1 - Lifka, S. A1 - Harsányi, K. A1 - Baumgartner, E. A1 - Pichler, L. A1 - Baiko, D. A1 - Wasmuth, Karsten A1 - Heitz, J. A1 - Meyer, M. A1 - Joel, A.-C. A1 - Bonse, Jörn A1 - Baumgartner, W. ED - Mail, M. T1 - Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders N2 - Nanofibers are drawing the attention of engineers and scientists because their large surface-to-volume ratio is favorable for applications in medicine, filter technology, textile industry, lithium-air batteries, and optical sensors. However, when transferring nanofibers to a technical product in the form of a random network of fibers, referred to as nonwoven fabric, the stickiness of the freshly produced and thus fragile nanofiber nonwoven remains a problem. This is mainly because nanofibers strongly adhere to any surface because of van der Waals forces. In nature, there are animals that are actually able to efficiently produce, process, and handle nanofibers, namely cribellate spiders. For that, the spiders use the calamistrum, a comb-like structure of modified setae on the metatarsus of the hindmost (fourth) legs, to which the 10–30 nm thick silk nanofibers do not stick due to a special fingerprint-like surface nanostructure. In this work, we present a theoretical model of the interaction of linear nanofibers with a sinusoidally corrugated surface. This model allows for a prediction of the adhesive interaction and, thus, the design of a suitable surface structure to prevent sticking of an artificially nonwoven of nanofibers. According to the theoretical prediction, a technical analogon of the nanoripples was produced by ultrashort pulse laser processing on different technically relevant metal surfaces in the form of so-called laser-induced periodic surface structures (LIPSS). Subsequently, by means of a newly established peel-off test, the adhesion of an electrospun polyamide fiber-based nonwoven was quantified on such LIPSS-covered aluminium alloy, steel, and titanium alloy samples, as well as on polished (flat) control samples as reference and, additionally, on samples with randomly rough surfaces. The latter revealed that the adhesion of electrospun nanofiber nonwoven is significantly lowered on the nanostructured surfaces compared with the polished surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Cribellate spiders KW - Calamistrum KW - Electrospinning KW - Nanofibers PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-561799 SN - 2190-4286 VL - 13 SP - 1268 EP - 1283 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-56179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Szymoniak, Paulina A1 - Smales, Glen Jacob A1 - Sturm, Heinz A1 - Schönhals, Andreas T1 - Electrospun nanocomposites fibers of polycarbonate and taurine modified boehmite nanoparticles - What can be learned from structural and thermal investigations N2 - Though the reinforcing properties of inorganic particles in thermosetting nanocomposites, has been exploited, the integration of nanoparticles continues to be challenging in terms of their homogeneous distribution and their manipulation which can contribute to occupational hazards. Due to a second encapsulations of nanoparticles, electrospun nanocomposite fibers containing nanoparticles might be an alternative for overcoming these issues, as the fiber nonwovens contains the nanoparticles allowing for safer manipulation. Here, the morphology, and the thermal properties of electrospun polycarbonate fibers containing taurine modified boehmite nanoparticles (BNP) are investigated by means of small and wide-angle X-ray scattering as well as fast scanning and temperature modulated fast scanning calorimetry for the first time. The latter techniques allow the investigation of the thermal properties of single fibers at heating rates up to 10^4 K s^-1 keeping its structure intact. A quantitative analysis of the scattering data reveals a porous structure of the fibers. The porous structure is quantified regarding the pore volume and the pore size. A constant amount of aggregation is found even for the highly BNP loaded fibers. Thermal analysis on the fibers reveals a rigid amorphous fraction (RAF) where it is known that RAF determinates the properties of a nanocomposite to a large extent. For the fibers RAF amounts up to 40 wt%, which is essential higher compared to equally formulated PC/BNP composite cast films. The RAF in the case of the fibers, is not only due to the presence of particles in the polymer but also due to orientation effects induced by the electrospinning process. KW - Nanocomposite fibers KW - Electrospinning KW - X-ray scattering KW - Fast scanning calorimetry KW - Rigid amorphous fraction PY - 2021 U6 - https://doi.org/10.1021/acsapm.1c01265 VL - 3 IS - 12 SP - 6572 EP - 6585 PB - ACS AN - OPUS4-53871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kanerva, M. A1 - Matrenichev, V. A1 - Layer, R. A1 - Takala, T. M. A1 - Laurikainen, P. A1 - Sarlin, E. A1 - Elert, Anna Maria A1 - Yuding, V. A1 - Seitsonen, J. A1 - Ruokolainen, J. A1 - Saris, P. T1 - Comparison of Rosin and Propolis Antimicrobials in Cellulose Acetate Fibers Against Staphylococcus aureus N2 - The quantitative difference in the antibacterial response was measured for pine rosin and propolis against Staphylococcus aureus ATCC 12598. The activity was studied for fibrous networks that form entirely bio-based cellulose-acetate (CA) materials. The analysis considers the effects of bacterial input, additive dosage, solvent type, variation in preparation, as well as the effect of storage time. Based on the results, the electrospun network structure is dependent on the solvent and the concentration of rosin and propolis. Both rosin and propolis improved the cellulose acetate solution processability, yet they formed beads at high concentrations. Rosin and propolis created strong antibacterial properties when these material systems were immersed in the liquid for 24 h at room temperature. The response remained visible for a minimum of two months. The electrospun networks of water and DMAc solvent systems with 1 to 5 wt% rosin content were clearly more efficient (i.e., decrease of 4 to 6 logs in colony forming units per mL) than the propolis networks, even after two months. This efficiency is likely due to the high content of abietic acids present in the rosin, which is based on the Fourier transform infrared spectra. The results of the additional analysis and cell cultivation with dermal fibroblast cells indicated an impairing effect on skin tissue by the rosin at a 1 wt% concentration compared to the pure CA fibers. KW - Electrospinning KW - Rosin KW - Propolis KW - Antibacterial KW - Cellulose acetate PY - 2020 SN - 1930-2126 VL - 15 IS - 2 SP - 3756 EP - 3773 AN - OPUS4-50635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cano Murillo, Natalia A1 - Elert, Anna Maria A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Electron beam modified cellulose acetate electrospun mats N2 - The electrospun fibers with micrometer diameter show ribbon-like morphology, the physical features are further studied by Scanning Electron Microscopy (SEM), Fourier Transformed Infrared Spectroscopy (FTIR) and Raman and XPS Spectroscopy is used to study the changes after irradiation. Partial electron beam treatment of the electrospun mats lead to localized fluorescence with a broad band emission. The change in the optical response of the fluorescent area in the mats is measured under different chemical environments to evaluate their suitability as an optical chemical sensor in polar and non polar environments. T2 - EUROMAT 2017 CY - Thessaloniki, Greece DA - 17.09.2017 KW - Fluorescence quenching KW - Electrospinning KW - Electron beam PY - 2017 AN - OPUS4-42172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -