TY - CONF A1 - Braun, T. A1 - Jäger, M. A1 - Rauch, H. A1 - Brach, K. A1 - Singh, R. A1 - Kondas, J. A1 - Uhlmann, E. A1 - Häcker, Ralf T1 - Evaluation of electric conductivity and mechanical load capacity of copper deposits for application in large winding components for electrical high-voltage machines made with cold spray additive manufacturing N2 - In line with the industrial trend of additive manufacturing, cold spray as a non-laser-based process is becoming increasingly important for many fields of application. For the evaluation of additive manufacturing of winding components made of copper for large electrical high-voltage machines, material and component properties such as electrical conductivity, mechanical load capacity and the component size that can be produced are of particular importance. In this context, the cold spray process offers advantages over laser-based additive manufacturing processes such as laser powder bed fusion (LPBF) or laser cladding by using the kinetic energy of the copper powder particles to generate particle cohesion. To investigate the electrical conductivity as well as the mechanical load capacity of cold spray parts, specimens were machined out of cold sprayed bulk copper deposits. The characteristic values were obtained with regard to the direction of deposition, which is defined by the direction of the robot’s movement. Thus, for the investigation of the component properties, specimens were provided that had been produced both longitudinally and transversely as well as orthogonally to the direction of deposition. The results of the investigations show that both the electrical conductivity and the mechanical load capacity of the specimen have a strong preferential direction of the specimen orientation with respect to the direction of deposition. Furthermore, it could be shown that by increasing the deposition height, there is an increasing oxygen content in the sample material, combined with increasingly significant defect networks. These effects have a negative impact on the electrical conductivity as well as on the mechanical load capacity. As a conclusion, further need for investigation is identified in the optimization of the process parameters as well as in the deposition strategy for the additive manufacturing of large-volume components with cold spray. T2 - ITSC 2022 CY - Vienna, Austria DA - 04.05.2022 KW - Cold Spray KW - Copper powder particles KW - Electrical conductivity KW - Large electrical high-voltage machine PY - 2022 AN - OPUS4-56127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, T. A1 - Uhlmann, E. A1 - Häcker, Ralf A1 - Jäger, M. A1 - Rauch, H. A1 - Kondas, J. A1 - Brach, K. A1 - Singh, R. T1 - Evaluation of electric conductivity and mechanical load capacity of copper deposits for application in large winding components for electrical high-voltage machines made with cold spray additive manufacturing N2 - In line with the industrial trend of additive manufacturing, cold spray as a non-laser-based process is becoming increasingly important for many fields of application. For the evaluation of additive manufacturing of winding components made of copper for large electrical high-voltage machines, material and component properties such as electrical conductivity, mechanical load capacity and the component size that can be produced are of particular importance. In this context, the cold spray process offers advantages over laser-based additive manufacturing processes such as laser powder bed fusion (LPBF) or laser cladding by using the kinetic energy of the copper powder particles to generate particle cohesion. To investigate the electrical conductivity as well as the mechanical load capacity of cold spray parts, specimens were machined out of cold sprayed bulk copper deposits. The characteristic values were obtained with regard to the direction of deposition, which is defined by the direction of the robot’s movement. Thus, for the investigation of the component properties, specimens were provided that had been produced both longitudinally and transversely as well as orthogonally to the direction of deposition. The results of the investigations show that both the electrical conductivity and the mechanical load capacity of the specimen have a strong preferential direction of the specimen orientation with respect to the direction of deposition. Furthermore, it could be shown that by increasing the deposition height, there is an increasing oxygen content in the sample material, combined with increasingly significant defect networks. These effects have a negative impact on the electrical conductivity as well as on the mechanical load capacity. As a conclusion, further need for investigation is identified in the optimization of the process parameters as well as in the deposition strategy for the additive manufacturing of large-volume components with cold spray. T2 - ITSC 2022 CY - Wien, Austria DA - 04.05.2022 KW - Cold Spray KW - Electrical conductivity KW - Copper powder particles KW - Large electrical high-voltage machine PY - 2022 SP - 1 EP - 7 AN - OPUS4-56108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frisch, M. A1 - Laun, J. A1 - Marquardt, Julien A1 - Arinchtein, A. A1 - Bauerfeind, K. A1 - Bernsmeier, D. A1 - Bernicke, M. A1 - Bredow, T. A1 - Kraehnert, R. T1 - Bridging experiment and theory: enhancing the electrical conductivities of soft-templated niobium-doped mesoporous titania films† N2 - Theoretical calculations suggest a strong dependence of electrical conductivity and doping concentration in transition-metal doped titania. Herein, we present a combined theoretical and experimental approach for the prediction of relative phase stability and electrical conductivity in niobium-doped titania as model system. Our method paves the way towards the development of materials with improved electrical properties. KW - Electrical conductivity KW - Prediction relative KW - Transition-metal doped KW - System method PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521371 SN - 1463-9084 VL - 23 IS - 5 SP - 3219 EP - 3224 PB - Royal Society of Chemistry AN - OPUS4-52137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed Aejaz A1 - Szymoniak, Paulina A1 - Smales, Glen Jacob A1 - Bermeshev, M. A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular mobility of polynorbornenes with trimethylsiloxysilyl side groups: Influence of the polymerization mechanism N2 - We report dielectric and calorimetric studies on metathesis and addition-type polytricyclononenes, both based on the same monomer bearing three pendant OSiMe3 groups. For the addition-type polymer, dielectric spectroscopy reveals a β*-process related to the microporosity, whereas for its metathesis counterpart, the segmental dynamics manifests as an α-process related to a glass transition. Besides active dielectric processes, a significant conductivity contribution is detected for both samples which for the microporous additiontype polymer is three orders of magnitude greater than for the metathesis polymer. The broadband dielectric spectroscopy is complemented by detailed calorimetric investigations, comprising DSC, FSC, and TMDSC. The calorimetric methods detected the glass transition for the metathesis polymer in agreement with the observed dielectric α-process. Furthermore, the already reported gas transport properties for both polymers are compared, setting them in correlation with the observed molecular mobility and conductivity behavior. The discussed results reflect significant differences in molecular mobility of the two polymers affecting the appearance of microporosity which strongly determines the gas transport properties. KW - Microporous polymers KW - Molecular mobility KW - Electrical conductivity KW - Membrane polymers KW - Gas separation PY - 2022 U6 - https://doi.org/10.22079/JMSR.2021.538060.1495 SN - 2476-5406 VL - 8 IS - 3 SP - 1 EP - 9 PB - Membrane Processes Research Laboratory (MPRL) CY - Tehran AN - OPUS4-54303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Pauw, Brian Richard A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes N2 - Superglassy polymers with a large fractional free volume have emerged as novel materials with a broad range of applications, especially in the field of membrane separations. Highly permeable addition-type substituted polynorbornenes with high thermal resistance and chemical stability are among the most promising materials. The major obstacle for extending the practical membrane application is their strong tendency to physical aging, leading to a partial decline in their superior transport performance over time. In the present study, broadband dielectric spectroscopy with complementary X-ray scattering techniques were employed to reveal changes in microporous structure, molecular mobility, and conductivity by systematic comparison of two polynorbornenes with different numbers of trimethylsilyl side groups. Their response upon heating (aging) was compared in terms of structure, dynamics, and charge transport behavior. Furthermore, a detailed analysis of the observed Maxwell−Wagner−Sillars polarization at internal interfaces provides unique information about the microporous structure in the solid films. The knowledge obtained from the experiments will guide and unlock potential in synthesizing addition-type polynorbornenes with versatile properties. KW - Dielectric spectroscopy KW - Molecular mobility KW - Electrical conductivity KW - Gas separation membranes PY - 2019 U6 - https://doi.org/10.1021/acsapm.9b00092 SN - 2637-6105 VL - 1 IS - 4 SP - 844 EP - 855 PB - ACS CY - Washington DC AN - OPUS4-47838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -