TY - JOUR A1 - Madkour, Sherif A. A1 - Gawek, Marcel A1 - Penner, P. A1 - Paneff, F. A1 - Zhang, X. A1 - Gölzhäuser, A. A1 - Schönhals, Andreas T1 - Can Polymers be Irreversibly Adsorbed on Carbon Nanomembranes? A Combined XPS, AFM, and Broadband Dielectric Spectroscopy Study JF - ACS Applied Polymer Materials N2 - Carbon nanomembranes are synthetic two-dimensional sheets with nanometer thickness, macroscopic lateral dimensions, and high structural homogeneity. They have great application potential in various branches of nanotechnology. Because of their full carbon structure, it is not clear whether macromolecules like poly(methyl methacrylate) (PMMA) can be irreversibly adsorbed on their surface. Here, irreversible adsorption means that the polymer chains cannot be removed by a leaching process, which is assumed in technological transfer processes. However, if polar defects are present on the carbon nanomembranes (CNMs), it may occur that polymers can be irreversibly adsorbed. To address this question, PMMA was spin-coated on top of CNMs, annealed for a specific time at different temperatures, and then tried to be removed by a acetone treatment in a leaching approach. The samples were investigated in detail by atomic force microscopy, X-ray photoelectron spectroscopy, and broadband dielectric spectroscopy, where the latter method has been applied to CNMs for the first time. Unambiguously, it was shown that PMMA can be adsorbed on the surface of CNMs after annealing the sample above the glasstransition temperature of PMMA. The general occurrence of polar defects on the surface of CNMs and the adsorption of polymers open opportunities for advanced innovative hybrid materials combining the properties of the CNM with those of the polymer. KW - Carbon Nanomembranes KW - Irreversible adsorption KW - Broadband dielectric spectroscopy KW - XPS spctroscopy KW - Atomic force microscopy PY - 2022 DO - https://doi.org/10.1021/acsapm.2c01320 SN - 2637-6105 VL - 4 IS - 11 SP - 8377 EP - 8385 PB - ACS AN - OPUS4-56067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Krause, Christina A1 - Huber, P. A1 - Schönhals, Andreas T1 - Multiple glassy dynamics of a homologous series of triphenylene-based columnar liquid crystals – A study by broadband dielectric spectroscopy and advanced calorimetry JF - Journal Molecular Liquids N2 - Hexakis(n-alkyloxy)triphenylene) (HATn) consisting of an aromatic triphenylene core and alkyl side chains are model discotic liquid crystal (DLC) systems forming a columnar mesophase. In the mesophase, the molecules of HATn self-assemble in columns, which has one-dimensional high charge carrier mobility along the columns. Here, a homologous series of HATn with different length of the alkyl chain (n = 5,6,8,10,12) is investigated using differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques including fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). The investigation of the phase behavior was done utilizing DSC experiments and the influence of the alkyl chain length on the phase behavior was revealed. By the dielectric investigations probing the molecular mobility, a c-relaxation due to localized fluctuations as well as two glassy dynamics, the acore- and aalkyl-relaxation, were observed in the temperature range of the plastic crystalline phase. Moreover, the observed glassy dynamics were further studied employing advanced calorimetry. All observed relaxation processes are attributed to the possible specific molecular fluctuations and discussed in detail. From the results a transition at around n = 8 from a rigid constrained (n = 5,6) to a softer system (n = 10,12) was revealed with increasing alkyl chain length. A counterbalance of two competing effects of a polyethylene-like behavior of the alkyl chains in the intercolumnar domains and self-organized confinement is discussed in the context of a hindered glass transition. KW - Discotic liquid crystals KW - Broadband dielectric spectroscopy KW - Advanced calorimetry PY - 2022 DO - https://doi.org/10.1016/j.molliq.2022.119212 VL - 358 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-54721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -