TY - THES A1 - Schlichting, Joachim T1 - Integrale Verfahren der aktiven Infrarotthermografie N2 - Die zerstörungsfreie Prüfung ist eine Aufgabe von großer Bedeutung, sowohl aus wirtschaftlicher Perspektive, als auch um die notwendige Sicherheit technischer Systeme gewährleisten zu können. Mit der Thermografie steht eine schnelle und berührungslose Prüftechnik zur Verfügung, die nicht zuletzt wegen der rapiden Entwicklung auf dem Gebiet der Infrarotkameras in letzter Zeit große Aufmerksamkeit erfährt. Typischerweise werden thermografisch oberflächennahe, parallel zur Oberfläche ausgedehnte Defekte nachgewiesen. In dieser Arbeit werden zwei untypische Prüfprobleme gelöst. An Punktschweißverbindungen wird mit der Linsengröße eine Struktur in der Mitte der Probe mittels Blitzlichtthermografie indirekt vermessen. Hier können typische Fehlerbilder wie Klebverbindungen und Spritzer sicher erkannt werden, was statistisch abgesichert durch eine Serienmessung und den Vergleich mit zerstörender Prüfung gezeigt wird. Ein Beispiel für orthogonal zur Oberfläche orientierte Fehlstellen stellen Risse dar, wie sie beispielsweise in Schweißnähtenn häufig auftreten. Neben der Entwicklung eines Verfahrens zur Detektion von Rissen, welches auf kommerziell erhältlichen Geräten aufbaut, wurde in Experimenten und Finite-Elemente-Simulationen untersucht, inwieweit sich auch die geometrischen Eigenschaften bestimmen lassen. Mit einem Verfahren, das ebenso wie die Methode zur Prüfung der Schweißpunkte auf der Analyse zeitlich und räumlich integraler Größen basiert, die vom thermischen Widerstand abhängen, ist die gleichzeitige Bestimmung von Winkel und Tiefe möglich. N2 - Non-destructive evaluation is a task of utmost importance for both, the economic point of view and to guarantee the required safety and reliability of technical systems. Thermography is a fast and contactless technique which received continued attention not least through the significant price drop at the infrared camera market. It is typically used to detect near-surface defects which are expanded parallel to the surface. This thesis deals with two non-standard inspection tasks. With the weld lens diameter of spot welds, a feature in the sample's geometrical center is indirectly sized by ash thermography. The presented method is suitable to distinguish typical error classes like stick welds or expulsions. This fact is validated by statistical evaluations of thermographic and destructive test series. As an example for perpendicularly oriented imperfections, surface cracks are investigated, which can be a major problem at welding seams. A technique for detecting cracks entirely based on commercially available equipment is developed. In addition, the accessibility of geometric characteristics of cracks was examined by experiments and FEM-simulations. Similar to the method developed for assessing spot welds, an approach based on the analysis of spatial and temporal integral quantities which depend on the thermal resistance is used. In doing so, the simultaneous determination of crack angle and depth is possible. T3 - BAM Dissertationsreihe - 91 KW - Aktive Thermografie KW - FEM KW - Spot Welding KW - Cracks KW - Nondesstructive Evaluation KW - Active Thermography KW - Zerstörungsfreie Prüfung KW - Punktschweißen KW - Risse KW - FEM PY - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-676 SN - 978-3-9815134-6-2 SN - 1613-4249 VL - 91 SP - 1 EP - 209 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-67 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Myrach, Philipp T1 - Aktive Thermografie zur Charakterisierung von Fertigungsfehlern und Schäden in Faserverbundwerkstoffen N2 - -Typische Prüfaufgaben -Vergleich Blitz- und Lock-in Thermografie -Vergleich der Nachweisempfindlichkeiten in CFK und GFK -Vergleich mit anderen ZFP-Verfahren -Vorteile und Grenzen aktiver Thermografieverfahren zur Prüfung von Faserverbundwerkstoffen T2 - Fachtagung Zerstörungsfreie Prüfverfahren in der Kunststoffindustrie des SKZ CY - Würzburg, Germany DA - 27.9.2016 KW - Aktive Thermografie KW - Blitz-Anregung KW - Lock-in-Anregung KW - CFK KW - GFK PY - 2016 AN - OPUS4-37556 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Jan P. A1 - Götschel, S. A1 - Maierhofer, Christiane A1 - Weiser, M. T1 - Determining the Material Parameters for the Reconstruction of Defects in Carbon Fiber Reinforced Polymers from Data Measured by Flash Thermography N2 - Flash thermography is a fast and reliable non-destructive testing method for the investigation of defects in carbon fiber reinforced polymer (CFRP) materials. In this paper numerical simulations of transient thermography data are presented, calculated for a quasi-isotropic flat bottom hole sample. They are compared to experimental data. These simulations are one important step towards the quantitative reconstruction of a flaw by assessing thermographic data. The applied numerical model is based on the finite-element method, extended by a semi-analytical treatment of the boundary of the sample, which is heated by the flash light. A crucial part for a reliable numerical model is the prior determination of the material parameters of the specimen as well as of the experimental parameters of the set-up. The material parameters in plane and in depth diffusivity are measured using laser line excitation. In addition, the absorption and heat transfer process of the first layers is investigated using an IR microscopic lens. The performance of the two distinct components of CFRP during heating – epoxy resin and carbon fibers – is examined. Finally, the material parameters are optimized by variation and comparison of the simulation results to the experimental data. The optimized parameters are compared to the measured ones and further methods to ensure precise material parameter measurements are discussed. T2 - 43rd Review of Progress in Quantitative Nondestructive Evaluation CY - Atlanta, GA, USA DA - 17.07.2016 KW - Aktive Thermografie KW - Thermische Diffusivität KW - Zerstörungsfreie Prüfung KW - Kohlenstofffaserverstärkter Kunststoff KW - CFK KW - Active thermography KW - Thermal diffusivity KW - Non-Destructive testing KW - Carbon fiber reinforced polymer KW - CFRP PY - 2017 SN - 978-0-7354-1474-7 U6 - https://doi.org/10.1063/1.4974671 SN - 0094-243X VL - 1806 IS - 1 SP - UNSP 100006-1 EP - 11 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-39332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Unnikrishnakurup, Sreedhar A1 - Monte, C. A1 - Adibekyan, A. A1 - Gutschwager, B. A1 - Knazowicka, L. A1 - Blahut, A. A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. A1 - Aktas, A. T1 - Einfluss thermischer und optischer Materialeigenschaften auf die Charakterisierung von Fehlstellen in Faserverbundwerkstoffen mit aktiven Thermografieverfahren T1 - Influence of thermal and optical material properties on the characterization of defects in fiber reinforced composites with active thermography methods N2 - In diesem Beitrag werden zerstörungsfreie Untersuchungen mittels aktiver Thermografie an Probekörpern aus CFK und GFK mit unterschiedlichen künstlichen Fehlstellen vorgestellt. Dabei wird die zeitliche und örtliche Temperaturverteilung nach der Erwärmung mit Blitzlampen oder mit einem Infrarot-Strahler mit einer Infrarot-Kamera erfasst. Zur späteren Rekonstruktion der Messdaten wurde ein numerisches Modell entwickelt. Dazu war die Bestimmung der thermophysikalischen und optischen Materialeigenschaften erforderlich, was in diesem Beitrag ebenfalls beschrieben wird. Die Ergebnisse der numerischen Modellierung werden mit den experimentellen Untersuchungen der aktiven Thermografie verglichen. Weiterhin werden die experimentellen Untersuchungen hinsichtlich der beiden Materialsysteme CFK und GFK und unter Berücksichtigung der Teiltransparenz des GFK-Materials sowie der unterschiedlichen Anregungsquellen bewertet. N2 - This paper presents results of the non-destructive evaluation of CFRP and GFRP test specimens with various artificial defects using active thermography. After heating the specimens with flash lamps or with an infrared radiator, the temporal and spatial resolved temperature distribution is recorded with an infrared camera. For the reconstruction of the experimental data, a numerical model was developed. For the numerical simulations, the thermal and optical material parameters had to be determined, which is described in this contribution as well. The results of numerical modelling are compared to experimental data of active thermography. Additionally, the experimental results are assessed related to the two materials CFRP and GFRP by considering the partial transmissivity of the GFRP material, and to the different excitation sources. T2 - Temperatur 2017 CY - Berlin, Germany DA - 17.05.2017 KW - Zerstörungsfreie Prüfung KW - Aktive Thermografie KW - Faserverbundwerkstoffe (CFK, GFK) KW - Numerische Simulation PY - 2017 U6 - https://doi.org/10.1515/teme-2017-0078 SN - 0171-8096 SN - 2196-7113 VL - 85 IS - 1 SP - 13 EP - 27 PB - DE GRUYTER CY - Oldenburg AN - OPUS4-42395 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jonietz, Florian A1 - Krankenhagen, Rainer A1 - Noack, M. A1 - Gensecke, K. A1 - Wiedenmann, E. T1 - 3D-Formbestimmung mit integrierter thermografischer Qualitätsprüfung N2 - Sowohl die 3D-Formbestimmung als auch die Thermografie sind Verfahren der Qualitätssicherung. Im vorgestellten Projekt wird versucht, die beiden Methoden zusammenzuführen. Das Prinzip des für die Formbestimmung verwendeten 3D-Scanners beruht auf dem bereits bekannten Verfahren der Streifenlichtprojektion. Die Neuartigkeit des hier verwendeten 3D-Scanners besteht darin, dass nicht im sichtbaren, sondern im infraroten Spektralbereich gearbeitet wird. Dadurch wird es möglich, nicht die Reflexion, sondern die Wärmestrahlung des Prüfobjektes nach Absorption der eingebrachten Strahlung auszuwerten. Dies ermöglicht, auch optisch „nicht-kooperative“ Oberflächen zu erfassen. Die Anregung mit Wärmestrahlung stellt das Bindeglied zum Verfahren der aktiven Thermografie für die Detektion verdeckter Schäden dar. Bei letzterem Verfahren wird der Wärmestau über Defekten beim Eindringen der Wärme in die Tiefe des Materials gemessen. Dabei stellen Defekte eine Störung des 3D-Scan-Verfahrens dar, während umgekehrt unregelmäßig geformte Oberflächen das thermografische Verfahren erschweren, d.h. der Messeffekt eines der Verfahren ist ein Störeffekt für das jeweils andere Verfahren. Es wird zum einen der Frage nachgegangen, inwieweit das 3D-Scan-Verfahren durch verdeckte thermische Defekte beeinträchtigt wird, und zum anderen die Möglichkeit untersucht, den vorhandenen 3D-Scanner auch für die aktive Thermografie einzusetzen. Es werden CFK-Proben mit künstlich eingebrachten thermischen Defekten untersucht und die Möglichkeiten und Grenzen der vorhandenen Messapparatur für die Defekterkennung aufgezeigt. T2 - DGZfP-Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - 3D-Formbestimmung KW - Thermografische Qualitätsprüfung KW - Streifenlichtprojektion KW - 3D-Scanner KW - Aktive Thermografie PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-407856 UR - https://jahrestagung.dgzfp.de/Portals/151//doc/Mi.1.A.3.pdf SN - 978-3-940283-85-6 VL - 162 SP - 1 EP - 9 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-40785 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jonietz, Florian A1 - Krankenhagen, Rainer A1 - Noack, M. A1 - Gensecke, K. A1 - Wiedenmann, E. T1 - 3D-Formbestimmung mit integrierter thermografischer Qualitätsprüfung N2 - Sowohl die 3D-Formbestimmung als auch die Thermografie sind Verfahren der Qualitätssicherung. Im vorgestellten Projekt wird versucht, die beiden Methoden zusammenzuführen. Das Prinzip des für die Formbestimmung verwendeten 3D-Scanners beruht auf dem bereits bekannten Verfahren der Streifenlichtprojektion. Die Neuartigkeit des hier verwendeten 3D-Scanners besteht darin, dass nicht im sichtbaren, sondern im infraroten Spektralbereich gearbeitet wird. Dadurch wird es möglich, nicht die Reflexion, sondern die Wärmestrahlung des Prüfobjektes nach Absorption der eingebrachten Strahlung auszuwerten. Dies ermöglicht, auch optisch „nicht-kooperative“ Oberflächen zu erfassen. Die Anregung mit Wärmestrahlung stellt das Bindeglied zum Verfahren der aktiven Thermografie für die Detektion verdeckter Schäden dar. Bei letzterem Verfahren wird der Wärmestau über Defekten beim Eindringen der Wärme in die Tiefe des Materials gemessen. Dabei stellen Defekte eine Störung des 3D-Scan-Verfahrens dar, während umgekehrt unregelmäßig geformte Oberflächen das thermografische Verfahren erschweren, d.h. der Messeffekt eines der Verfahren ist ein Störeffekt für das jeweils andere Verfahren. Es wird zum einen der Frage nachgegangen, inwieweit das 3D-Scan-Verfahren durch verdeckte thermische Defekte beeinträchtigt wird, und zum anderen die Möglichkeit untersucht, den vorhandenen 3D-Scanner auch für die aktive Thermografie einzusetzen. Es werden CFK-Proben mit künstlich eingebrachten thermischen Defekten untersucht und die Möglichkeiten und Grenzen der vorhandenen Messapparatur für die Defekterkennung aufgezeigt. T2 - DGZfP-Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - 3D-Formbestimmung KW - Thermografische Qualitätsprüfung KW - Streifenlichtprojektion KW - 3D-Scanner KW - Aktive Thermografie PY - 2017 AN - OPUS4-40787 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Hosseini, Seyed A1 - Heckel, Thomas A1 - Gaal, Mate A1 - Schadow, Florian A1 - Brackrock, Daniel A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. T1 - Quantitative Bewertung künstlicher und natürlicher Fehler in Faserverbundwerkstoffen mit aktiver Thermografie und Ultraschall N2 - Im EMRP-Projekt VITCEA werden komplementäre ZFP-Verfahren zur Prüfung von Faserverbundwerkstoffen weiterentwickelt und validiert. In diesem Beitrag werden Ergebnisse verschiedener Techniken der aktiven Thermografie und des Ultraschalls vorgestellt. Die Nachweisempfindlichkeiten bezüglich künstlicher und natürlicher Fehler mit unterschiedlichen lateralen Ausdehnungen und in verschiedenen Tiefen werden miteinander verglichen. T2 - DGZfP Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - CFK KW - GFK KW - Aktive Thermografie KW - Phased Array Ultraschall KW - Luftultraschall PY - 2017 AN - OPUS4-41089 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Hosseini, Seyed A1 - Heckel, Thomas A1 - Gaal, Mate A1 - Schadow, Florian A1 - Brackrock, Daniel A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. T1 - Quantitative Bewertung künstlicher und natürlicher Fehler in Faserverbundwerkstoffen mit aktiver Thermografie und Ultraschall N2 - Im EMRP-Projekt VITCEA werden komplementäre ZFP-Verfahren zur Prüfung von Faserverbundwerkstoffen weiterentwickelt und validiert. In diesem Beitrag werden Ergebnisse verschiedener Techniken der aktiven Thermografie und des Ultraschalls vorgestellt. Die Nachweisempfindlichkeiten bezüglich künstlicher und natürlicher Fehler mit unterschiedlichen lateralen Ausdehnungen und in verschiedenen Tiefen werden miteinander verglichen. T2 - DGZfP Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - CFK KW - GFK KW - Aktive Thermografie KW - Phased Array Ultraschall KW - Luftultraschall PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-410902 SN - 978-3-940283-85-6 VL - BB 162 SP - Di1B1, 1 EP - Di1B1, 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung e. V. AN - OPUS4-41090 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Unnikrishnakurup, Sreedhar A1 - Monte, C. A1 - Adibekyan, A. A1 - Gutschwager, B. A1 - Knazowicka, L. A1 - Blahut, A. A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. A1 - Aktas, A. T1 - Einfluss thermischer und optischer Materialeigenschaften auf die Charakterisierung von Fehlstellen in Faserverbundwerkstoffen mit aktiven Thermografieverfahren N2 - In diesem Beitrag werden zerstörungsfreie Untersuchungen mittels aktiver Thermografie an Probekörpern aus CFK und GFK mit unterschiedlichen künstlichen Fehlstellen vorgestellt. Dabei wird die zeitliche und örtliche Temperaturverteilung nach Erwärmung mit Blitzlampen oder mit einem Infrarot-Strahler mit einer Infrarot-Kamera erfasst. Zur Rekonstruktion der Messdaten wurde ein numerisches Modell entwickelt. Dazu war die Bestimmung der thermischen und optischen Materialeigenschaften erforderlich. T2 - Temperatur 2017 CY - Berlin, Germany DA - 17.05.2017 KW - CFK KW - GFK KW - Aktive Thermografie KW - Numerische Simulation KW - Emissivität PY - 2017 AN - OPUS4-41087 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -