TY - JOUR A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Plajer, A. J. T1 - Thioanhydride/isothiocyanate/epoxide ring-opening terpolymerisation: sequence selective enchainment of monomer mixtures and switchable catalysis N2 - We report a new sequence selective terpolymerisation in which three monomers (butylene oxide (BO) A, PhNCS B and phtalic thioanhydride (PTA) C) are selectively enchained into an (ABA′C)n sequence. PTA/PhNCS/BO ring-opening terpolymerisation ROTERP can be coupled with CS2 ROTERP to generate tetrapolymers and with εDL ROP in switchable catalysis for blockpolymer synthesis. KW - Blockcopolymer KW - 1H-NMR KW - TGA KW - DSC KW - AFM PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552339 SP - 1 EP - 5 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-55233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - del Giorgio, Elena A1 - Kumari, P. A1 - Lymer, K. A1 - Connell, S. A1 - Zhang, S. A1 - Hodoroaba, Vasile-Dan A1 - Pikramenou, Z. T1 - Visible and NIR emissive lanthanide(III) surfaces for new luminescent materials N2 - Luminescent lanthanides(III) offer exceptional optical properties that can overcome issues often encountered with other fluorophores (e.g. organic dyes). Their long lifetimes up to milliseconds, low photobleaching and sharp and characteristic emission peaks make the lanthanides extremely valuable for the development of advanced luminescent materials. Previous work on Ru(II) and Ir(III) gold surfaces further highlights the potential of employing the luminescence of metal complexes for the fabrication of sensing platforms and devices. Here, we incorporate visible and NIR-emitting lanthanide(III) complexes Ln2L3 (Ln = Eu(III), Nd(III), Yb(III)) to gold and plasmonic surfaces, translating the unique optical properties of the lanthanides(III) to practical devices. The Ln2L3 complexes are deposited on the surfaces with different methods, ranging from polymer aided physisorption to the covalent attachment on the gold surface. Furthermore, we exploit the high sensitivity to the coordination environment of lanthanides(III) to design and prepare a sensing platform. T2 - 17th Conference on Methods and Applications in Fluorescence (MAF 2022) CY - Göteborg, Sweden DA - 11.09.2022 KW - Luminescent materials KW - Lanthanide(III) KW - Surface morphology KW - AFM KW - SEM/EDS PY - 2022 UR - https://maf2022.com/ AN - OPUS4-56126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - Improved Traceability Chain of Nanoparticle Size Measurement - What nPSize can offer to ISO/TC 229? N2 - The main outcomes of the EMPIR project nPSize are presented and the suitability of the new capabilities, e.g. reference materials, sample preparation protocols, measurement procedures, and data analysis, to be standardized and implemented in accredited analytical laboratories is discussed. Complementation and/or filling gaps of published and ongoing standardisation projects on size, shape and number concentration measurements under ISO/TC 229/JWG 2 are offered. The two VAMAS inter-laboratory comparisons resulted from the nSPize project and just started under TWA 34 Nanoparticle Populations (Projects #15 and #16) of bipyramidal TiO2 anatase and bimodal SiO2 nanoparticles are presented in detail. T2 - Interim Meeting of ISO/TC 229 Nanotechnologies - Strategy and Metrology Group CY - Online meeting DA - 09.05.2022 KW - Nanoparticles KW - Particle size distribution KW - Inter-laboratory comparison KW - Electron microscopy KW - AFM KW - SAXS KW - ISO/TC229 PY - 2022 AN - OPUS4-54819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Fontanges, R. A1 - Delvallée, A. A1 - Deumer, J. A1 - Salzmann, C. A1 - Crouzier, L. A1 - Gollwitzer, C. A1 - Klein, T. A1 - Koops, R. A1 - Sebaihi, N. A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Artous, S. A1 - Taché, O. A1 - Feltin, N. T1 - Report on full algorithm sequences for nanoparticle detection and size measurement as developed on both a physical basis and by machine learning N2 - he main objective of the nPSize project is to improve the measurement capabilities for nanoparticle size based on both measurement methods traceable to SI units and new reference materials. Two basic approaches have been used in order to develop measurement procedures resulting in traceable results of the nanoparticle size distribution: physical modelling for the methods used in the project (TSEM, SEM, AFM and SAXS) and machine learning. Physical modelling: In this part, the physical models associated with different shape measurements for the techniques TSEM, SEM, AFM and SAXS have been collected and further developed with the aim to simulate the resulting signal as measured by the individual methods. Uncertainties and traceability associated with each model were investigated and evaluated. In the following, the progress on these physical models is reported for each individual method. Machine Learning modelling: The aim of this part is to use machine learning to enable automatic measurement of nanoparticle shape from expert a-priori information only. No physical model will be used as a-priori information in this task. The accuracy and traceability of the size results obtained by each technique will be analyzed and compared with the physical modelling. A machine learning database will then be used to create automatic detection algorithms. KW - Nanoparticles KW - Particle size distribution KW - SEM KW - TSEM KW - TEM KW - SAXS KW - AFM PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546531 SP - 1 EP - 20 PB - Zenodo CY - Geneva AN - OPUS4-54653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Crouzier, L. A1 - Feltin, N. A1 - Delvallée, A. A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Cios, Grzegorz A1 - Tokarski, T. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis of the dimensional properties of bipyramidal titania nanoparticles by complementing electron microscopy with other methods N2 - In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano‐bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron‐transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM‐in‐SEM (or T‐SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X‐ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab‐initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration. KW - Nanoparticles KW - Complex-shape KW - Bipyramid KW - Electron microscopy KW - AFM KW - Size measurements KW - TKD KW - STEM-in-SEM KW - SAXS KW - Nanoparticle concentration KW - Correlative analysis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-539888 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-53988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michna, A. A1 - Maciejewska-Prończuk, J. A1 - Wasilewska, M. A1 - Kilicer, Tayfun A1 - Witt, Julia A1 - Özcan Sandikcioglu, Özlem T1 - Effect of the Anchoring Layer and Transport Type on the Adsorption Kinetics of Lambda Carrageenan N2 - The kinetics of lambda carrageenan (λ-car) adsorption/desorption on/from anchoring layers under diffusion- and convection-controlled transport conditions were investigated. The eighth generation of poly(amidoamine) dendrimers and branched polyethyleneimine possessing different shapes and polydispersity indexes were used for anchoring layer formation. Dynamic light scattering, electrophoresis, streaming potential measurements, optical waveguide lightmode spectroscopy, and quartz crystal microbalance were applied to characterize the formation of mono- and bilayers. The unique combination of the employed techniques enabled detailed insights into the mechanism of the λ-car adsorption mainly controlled by electrostatic interactions. The results show that the macroion adsorption efficiency is strictly correlated with the value of the final zeta potentials of the anchoring layers, the transport type, and the initial bulk concentration of the macroions. The type of the macroion forming the anchoring layer had a minor impact on the kinetics of λ-car adsorption. Besides significance to basic science, the results presented in this paper can be used for the development of biocompatible and stable macroion multilayers of well-defined electrokinetic properties and structure. KW - AFM KW - Dynamic light scattering KW - Electrophoresis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-540546 VL - 125 IS - 28 SP - 7797 EP - 7808 PB - American Chemical Society AN - OPUS4-54054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Feltin, N. A1 - Crouzier, L. A1 - Cios, G. A1 - Tokarski, T. T1 - Correlative imaging analysis of non-spherical nanoparticles N2 - It sounds like being a simple analytical task, it is definitely not. The way toward accurate measurement of the size distribution of nanoparticles (NPs) with complex shape, having a broad size polydispersity, with inhomogeneous chemistry, and with a high degree of agglomeration/aggregation is very challenging for all available analytical methods. Particularly for the NPs with complex shape, the access to the smallest dimension (as e.g. required for regulatory purposes) can be enabled only by using imaging techniques with spatial resolution at the nanoscale. Moreover, the full 3D-chacterisation of the NP shape can be provided either by advanced characterization techniques like 3D-TEM tomography or by correlative analysis, i. e. synergetic/complementary measurement of the same field-of-view of the sample with different probes. Examples of the latter type of analysis are: i) electron microscopy for the lateral dimensions and AFM for the height of the NPs, ii) SEM with STEM-in-SEM (also called T-SEM), iii) Electron Microscopy with TKD (Transmission Kikuchi Diffraction) for determination of the geometrical orientation of crystalline NPs, iv) Raman and SEM for e.g. thickness of graphen flakes, or v) Electron Microscopy for descriptive NP shape and SAXS for the NP concentration, the latter as a NP property able to be measured with higher and higher accuracy. For all these types of measurement, reference NPs are necessary for the validation of the measured size. Particularly non-spherical reference NPs are still missing. Examples of such new reference NPs as characterized by the correlative analyses enumerated above will be presented in detail in the contribution. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.9.2021 KW - Nanoparticles KW - Transmission Kikuchi Diffraction (TKD) KW - Correlative imaging KW - Electron microscopy KW - AFM KW - TiO2 KW - VAMAS PY - 2021 UR - https://www.european-mrs.com/meetings/2021-fall-meeting AN - OPUS4-53367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Friction and mechanical properties of AFM-scan-induced ripples in polymer films N2 - In the present paper, friction and mechanical properties of AFM-Scan-Induced ripple structures on films of polystyrene and poly-n-(butyl methacrylate) are investigated. Force volume measurements allow a quantitative analysis of the elastic moduli with nanometer resolution, showing a contrast in mechanical response between bundles and troughs. Additionally, analysis of the lateral cantilever deflection shows a clear correlation between friction and the sample topography. Those results support the theory of crack propagation and the formation of voids as a mechanism responsible for the formation of ripples. This paper also shows the limits of the presented measuring methods for soft, compliant, and small structures. KW - AFM KW - Polymer KW - Ripples KW - Mechanical properties KW - Friction PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532772 SN - 2297-3079 VL - 7 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-53277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bartczak, D. A1 - Hodoroaba, Vasile-Dan T1 - Report on the development and validation of the reference material candidates with non-spherical shape, non-monodisperse size distributions and accurate nanoparticle concentrations N2 - One aim of the EMPIR nPSize project 17NRM04 was to develop and validate three classes of candidate reference (test) materials (RTMs), with i) well-defined non-spherical shape, ii) relatively high polydispersity index, and iii) accurate particle concentrations. To fulfil the requirements of the project, 11 different types of materials were prepared. Following the initial assessment of the materials suitability, nPSize5_PT_UNITO, nPSize6_AC_UNITO and nPSize7_GN_CEA materials were found unsuitable for the project, due to various reasons. PT material was deemed unsuitable due to its predominantly agglomerated nature. AC material contained relatively high amount of impurities (other particle forms). GN material was found too heterogeneous in both the length and width for the purpose of the project. The remaining 8 candidate RTMs were assessed for their homogeneity and stability and used for successful delivery of the associated activities within the nPSize project. KW - Nanoparticles KW - Particle size distribution KW - Reference materials KW - Non-spherical shape KW - EMPIR nPSize KW - Electron microscopy KW - AFM KW - SAXS PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-556015 SP - 1 EP - 22 PB - Zenodo CY - Geneva AN - OPUS4-55601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cappella, Brunero A1 - Spaltmann, Dirk A1 - Gee, M. T1 - Editorial: Tribology and Atomic Force Microscopy - Towards Single Asperity Contact N2 - The concept behind this Research Topic (RT) was to collect works, in which Atomic Force Microscopy (AFM) techniques are employed to study tribological phenomena and to push the resolution of measurements towards single asperity contact. Thanks to the direct determination of sample height with sub-nanometer resolution and the possibility of measuring local friction, AFM can be employed after a tribotest to detect topography and friction changes at the nanometer scale. Recently, efforts are being expended to use AFM cantilevers as tribometers, i.e., as probes altering the volume of suitable samples, thereby measuring tip and/or sample wear and friction at the nano/microscale. Thus, single asperity contact, friction, and wear can be investigated. Since friction and wear at the macroscale are the result of asperities interactions, such experiments are of great importance for better understanding of tribological processes. KW - Nanotribology KW - Friction KW - Wear KW - Single asperity KW - AFM PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-571037 SN - 2297-3079 VL - 8 SP - 1 EP - 2 PB - Frontiers Media CY - Lausanne AN - OPUS4-57103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Würth, Christian T1 - Ensemble and single particle studies of the fluorescence properties of core­shell CdSe nanocrystals with different shells and surface chemistries N2 - The optical properties of semiconductor nanocrystals (SCNC) are controlled by constituent material, particle size, and surface chemistry, specifically the number of dangling bonds favoring nonradiative deactivation, and hence also by particle synthesis. In this respect, the fluorescence properties of coreshell CdSe SCNCs with different shells and surface chemistries were studied on ensemble and single particle level, using steady state and timeresolved fluorometry and confocal microscopy with time correlated single photon counting detection. Special emphasis was dedicated to correlate ensemble photoluminescence (PL) quantum yields and decay kinetics with particle brightness, PL time traces, and the Ontime fraction of the single SCNCs. Additionally, the confocal PL images were correlated with AFM measurements in order to derive the amount of absorbing, yet nonemisssive ”dark” SCNCs, the presence of which leading to an underestimation of ensemble PL quantum yields. The results of this study can help to identify synthetic routes and surface modifications minimizing the fraction of dark SCNC, thereby closing the gap to the ultimate goal of colloidally and photochemically stable SCNCs with a PL quantum yield of close to unity. T2 - FQDots16 CY - Berlin, Germany DA - 05.09.2016 KW - Confocal KW - QY KW - QD KW - SCNC KW - Single molecule KW - AFM PY - 2016 AN - OPUS4-38119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Würth, Christian T1 - Photoluminescence Properties of coreshell CdSe Nanocrystals with Different Shells and Surface Chemistries Derived from Ensemble and Single Particle Measurements N2 - The optical properties of semiconductor nanocrystals (SCNCs) depend on constituent material, particle size, and surface chemistry, with the size of the photoluminescence (PL) quantum yield (QY) and the PL decay kinetics being largely controlled by the number of dangling bonds, which have to be properly passivated for high quality materials. Hence, PL measurements can provide insight not only in SCNC photophysics, yet can be also used for quality control of SCNC synthesis and surface modification. In this respect, steady state and time-resolved fluorometry and confocal microscopy with time correlated single photon counting were used to study the PL properties of core-shell CdSe SCNCs with different shells and surface chemistries on ensemble and single particle level, thereby focusing on a correlation of ensemble PL QY and PL decay kinetics with particle brightness, PL time traces, and the On-time fraction of single SCNCs. Additionally, confocal PL images were correlated with AFM measurements in order to derive the amount of absorbing, yet non-emissive ”dark” SCNCs, the presence of which resulting in an underestimation of ensemble PL quantum yields. The results of this study can help to identify synthetic routes and surface modifications, which minimize the fraction of dark SCNCs. T2 - PicoQuant 22nd International Workshop on Single Molecule and Super-Resolution Microscopy in the Life Sciences CY - Berlin, Germany DA - 14.09.2016 KW - Single molecule KW - SCNC KW - QY KW - AFM KW - Confocal PY - 2016 AN - OPUS4-38121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wendt, U. A1 - Nolze, Gert T1 - Correlation between Crystal Orientation, Channeling Contrast and Topography during FIB Milling of Cu Studied by FIB, EBSD, SEM, and AFM N2 - We have studied the anisotropic milling of Cu with respect to the milling rate and the milling topography, as well. The background is twofold: i) anisotropic milling has to be taken into account during the preparation of TEM specimens and in the manufacturing of micro parts from crystalline materials, and ii) the orientation depending milling behaviour can be used to generate topographies with specific properties with respect to, for example, adsorption, wear, and corrosion. KW - FIB KW - AFM KW - Crystal orientation KW - SEM PY - 2007 VL - 44 IS - 5 SP - 236 EP - 238 PB - Carl Hanser Verlag AN - OPUS4-38026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wendt, U. A1 - Nolze, Gert A1 - Heyse, H. T1 - Effect of crystal orientation on imaging contrast and sputter results during focused ion beam milling of Cu studied by FIB, EBSD, SEM, and AFM N2 - During focused ion beam microscopy (FIB) of crystalline materials imaging contrast and milling result are effected by orientation of the crystals with respect to the incident ion beam. This is due to the possibility of ion channeling along preferred crystal directions which effects the depth at which interaction between ions and specimen atoms takes place. As a result of channeling emission of ion induced secondary electrons (iiSE) and secondary ions (SI) as well as the sputter rate decreases. Theoretical channeling orientations and critical angles can be calculated. These effects have been studied quantitatively for polycrystalline recrystallized Cu as a typical model case. KW - Electron backscatter diffraction KW - FIB KW - AFM KW - Crystal orientation PY - 2006 U6 - https://doi.org/10.1017/S1431927606061812 SN - 1431-9276 SN - 1435-8115 VL - 12 IS - Suppl. 2 SP - 1302 EP - 1303 AN - OPUS4-38027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahrbach, M. A1 - Friedrich, Sebastian A1 - Cappella, Brunero A1 - Peiner, Erwin T1 - Calibrating a high-speed contact-resonance profilometer N2 - A European EMPIR project, which aims to use large-scale piezoresistive microprobes for contact resonance applications, a well-established measurement mode of atomic force microscopes (AFMs), is being funded. As the probes used in this project are much larger in size than typical AFM probes some of the simplifications and assumptions made for AFM probes are not applicable. This study presents a guide on how to systematically create a model that replicates the dynamic behavior of microprobes, including air damping, nonlinear sensitivities, and frequency dependencies. The model is then verified by analyzing a series of measurements. KW - Piezoresistive cantilever KW - AFM KW - contact resonance PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509899 VL - 9 SP - 179 EP - 187 PB - Copernicus Publications AN - OPUS4-50989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Comparative analysis of error sources in the determination of wear volumes of oscillating ball-on-plane tests N2 - The accurate determination of wear volumes is a prerequisite for the study of numerous tribological phenomena. Wear volumes can be measured with different techniques or else be calculated starting from some quantities measured from the wear scar. Advantages and drawbacks of the measuring techniques are shown by means of wear scars and calottes resulting from ball-on-plane tests with 100Cr6 specimens. When measuring wear volumes, white light interferometry results to be one of the most suitable techniques. When wear volumes are calculated, errors result mainly from two sources: (1) the arbitrary choice of one or few line profiles for the determination of the width and of the planimetric wear, and (2) approximations in the calculation, which are even necessary when values of the wear volumes of the single tribological partners and not only the total volume are of interest. The effect of both error sources on the accuracy in the determination of wear volumes is characterized and elucidated by examples. It is found that errors due to approximations are negligible when compared to errors due to the arbitrary choice of one line profile. KW - Error sources analysis KW - White light interferometry KW - Statistical analysis KW - AFM KW - Wear KW - Oscillating ball-on-disc test PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508407 VL - 6 SP - Article 25 AN - OPUS4-50840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagel, Dorothee A1 - Sturm, Heinz T1 - Long range influence of boehmite nanoparticles on the nanomechanics of epoxy matrix used in carbon-fiber composites N2 - Boehmite nanoparticles (AlOOH) were recently found to improve properties such as crack resistance, shrinkage and compressive strength in epoxy composites. Concentration and surface modification of boehmite nanoparticles are key factors for abovementioned enhancements. To understand the underlying mechanisms, more detailed research of micro- and nanoscopic mechanical properties is required. The presented study aims to investigate the influence of concentration and surface modification of boehmite on the stiffness of the bulk epoxy by means of AFM-based approaches: Force-Distance curves (FDC) on the sub- microscale and Intermodulation AFM and amplitude-dependent force spectroscopy (ADFS) on the nanoscale. For this purpose, stiffness-maps of epoxy filled with boehmite, with and without surface modification (HAc-boehmite) were obtained by FDC. These measurements showed a slight increase in overall stiffness of composite with increasing the nanoparticle content. The stiffening effect was observed to be intensified with HAc-boehmite. Since the lateral resolution of FDC is not high enough to distinguish nanoparticles, this effect was assumed to be due to the inevitable inclusion of nanoparticles in the measurement. By using Intermodulation-AFM, yielding ADFS stiffness maps with the resolution of <10 nm, we were able to calculate the average stiffness of bulk epoxy without the interference of nanoparticles. It was expected that the stiffness of regions faraway from particles would be equal to neat epoxy. In contrast, the results showed a drastic increase in stiffness of epoxy with increasing boehmite concentration (0, 1, 2.5, and 15%) especially in case of introducing 15wt% HAc-boehmite. Another important observation was formation of a spatial structure with non-homogenous stiffness distribution in bulk epoxy with HAc-boehmite. The underlying mechanisms of described observations are not fully understood yet. One hypothesis is the local increase in crosslinking density which we aim to investigate in our further studies by combining Dynamic Mechanical Thermal Analysis (DMTA) and Intermodulation-AFM. T2 - Frontiers in Polymer Science CY - Seville, Spain DA - 17.05.2017 KW - AFM KW - Boehmite KW - Epoxy nanocomposite PY - 2017 AN - OPUS4-50688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Elert, Anna Maria A1 - Sturm, Heinz T1 - Studies on interphase formation of cured epoxy resin near boehmite surface N2 - The application of inorganic nanoparticles as reinforcement agent for polymer composites is constantly growing. Improving the performance of the material with desirable properties requires understanding of the interaction between polymer chains and nanoparticles and the properties of the interphase as well. Boehmite, a mineral of aluminum with basic unit of AlO(OH), is a novel and promising nanofiller which leads to enhanced performance of polymer composites. It has been recently reported that boehmite nanoparticles have reinforcing effect on epoxy matrix in carbon-fiber composites. It was primarily assumed that these improvements are due to very high Young’s modulus of boehmite particles. However, in our latest study we presented new values for the Young’s modulus of boehmite much lower than those reported earlier. This brings up the importance of interphase properties, e.g. the crosslink density, which can have the dominant role in the overall material property. Nevertheless, due to resolution limitations of conventional nanoprobing approaches, characterization of the interphase between individual particles and matrix is a challenge. In this study, the main goal is to investigate the interphase of the epoxy/boehmite nanocomposites using AFM-based methods. We simplify the three-dimensional nanocomposite system to a two-dimensional horizontally layered sample with a large and easy to access interphase area. For this purpose, 1µm coatings of hydrothermally synthesized boehmite are prepared as the substrate on which the epoxy is later molded and cured. AFM surface potential and force maps were obtained on the cross-sectional cut of epoxy/ boehmite sample. The results show unexpectedly a large interphase area (approx. 1 µm) with different electrical and mechanical properties comparing to bulk epoxy. The average force-distance curves from this region showed more elastic behavior compared to bulk. The underlying mechanism of this influence is not fully understood yet. Thus, further investigation on the interphase region using the novel Nano-IR approach provides more information about the chemical characteristics. Numerical simulation will give complementary information to understand the effect of nanoparticles on the crosslinking density of the interphase. This can be different to bulk epoxy due to either different local temperature gradients or due to a surface selectivity of boehmite towards the monomer molecules. T2 - ICCS20–20th International Conference on Composite Structures CY - Paris, France DA - 04.09.2017 KW - AFM KW - AFM-IR KW - ImAFM KW - Boehmite KW - Epox KW - Nanocomposite KW - Interphase KW - Nanomechanics PY - 2017 AN - OPUS4-50689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Mechanical and chemical alteration of polymer matrix induced by nanoparticles in epoxy-boehmite nanocomposites N2 - Inorganic nanoparticles are used to improve the performance of epoxy as the matrix phase in fiber-reinforced composites used for aerospace applications. The effectiveness of nanofillers on property enhancement of thermosetting polymers depends on many factors including the interaction between the functional groups of nanofillers and the polymer reactants. In the current work, we study the effect of boehmite nanoparticles (BNPs) on properties of anhydride-cured bisphenol-A-diglycidyl ether (DGEBA). Dynamic mechanical thermal analysis (DMTA) and a high-resolution force measurement approach called intermodulation atomic force microscopy (ImAFM) were carried out to investigate the thermomechanical and nanomechanical properties of this material, respectively. It was found that BNPs lead to decrease of glass transition temperature (Tg) and crosslink density of the polymer network meanwhile significantly enhancing the Young’s modulus. Besides formation of a soft interphase near the particles, significant changes in local stiffness of polymer matrix far from the interphase was observed with ImAFM. Thus, boehmite induces long-range chemical alteration on the matrix. This effect has a higher impact on overall composite properties compared to the formation of interphase which is only a short-range effect. The local chemical evaluations on the soft interphase using an infrared-AFM method (NanoIR) revealed the accumulation of anhydride hardener near the boehmite interface. Based on these observations the effect of boehmite on the curing of epoxy is hypothesized to be governed by the strong interaction between boehmite and the anhydride. This interaction causes changes the ratio of reactants in the epoxy mixture and hence alteration of curing pathway and the network architecture. In future studies we examine this hypothesis by measuring the thermomechanical properties of cured epoxies in which the epoxy-hardener ratio is systematically altered and further comparing to those properties of nanocomposites shown in the current study. T2 - HYMA 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Nanomechanics KW - Polymer nanocomposites KW - Boehmite KW - AFM KW - Epoxy PY - 2019 AN - OPUS4-50692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Elert, Anna Maria T1 - Combination of advanced atomic force microscopy methods to investigate mechanical and chemical interphases in epoxy-boehmite nanocomposites N2 - Formation of interphases between inorganic nanofillers and thermoplastic matrices are usually correlated to short-range interactions which does not exceed more than tens of nanometers away from the surface of the filler. Nevertheless, in nanocomposites with thermosetting matrices, the effect of nanofillers on the properties of the matrix is not limited to the immediate vicinities, but a long-range property alteration of the bulk polymer may be observed. The interaction between nanofillers and the polymer can disturb the curing reaction and alters the chemical, physical and mechanical properties of the polymer network in the matrix phase. In our studies, we aim to investigate short and long-range interphases of a nanocomposite system consisting of a thermosetting matrix (DGEBA) filled with an inorganic nanoparticle (boehmite). For this purpose, a combination of atomic force microscopy (AFM)-based approaches is implemented. Scanning kelvin probe microscopy (SKPM) was used to map the compositional contrast and the interphase with different electrical properties than the bulk. The mechanical properties of the interphase were probed by high resolution intermodulation AFM. (ImAFM). Furthermore, infrared spectroscopy AFM (AFM-IR) is used to investigate the chemical structure of the matrix at different distances from the nanoparticle. SKPM and (AFM-IR) measurements both show a long-range (to 10 µm) effect of boehmite on the chemical structure and surface potential of the bulk epoxy, respectively, whereas ImAFM force measurements reveals a short-range mechanical interphase between the filler and the matrix. The AFM-IR demonstrated the existence of unreacted anhydride hardener at the interphase. This indicates the preferential absorption of anhydride on the surface of boehmite. The consequence of such a selective interaction between the inorganic filler and the epoxy components is disturbance of the epoxy-hardener stoichiometric ratio, the curing mechanism. and the alteration of bulk properties of the matrix. T2 - EUROMAT CY - Stockholm, Sweden DA - 01.09.2019 KW - AFM KW - SKPM KW - AFM-IR KW - ImAFM KW - Boehmite PY - 2019 AN - OPUS4-50693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Ritter, M. A1 - Holschneider, M. A1 - Sturm, Heinz T1 - Enhanced DySEM imaging of cantilever motion using artificial structures patterned by focused ion beam techniques N2 - We use a dynamic scanning electron microscope (DySEM) to map the spatial distribution of the vibration of a cantilever beam. The DySEM measurements are based on variations of the local secondary electron signal within the imaging electron beam diameter during an oscillation period of the cantilever. For this reason, the surface of a cantilever without topography or material variation does not allow any conclusions about the spatial distribution of vibration due to a lack of dynamic contrast. In order to overcome this limitation, artificial structures were added at defined positions on the cantilever surface using focused ion beam lithography patterning. The DySEM signal of such high-contrast structures is strongly improved, hence information about the surface vibration becomes accessible. Simulations of images of the vibrating cantilever have also been performed. The results of the simulation are in good agreement with the experimental images. KW - FIB patterning KW - Structured cantilever KW - AFM KW - Modal analysis KW - DySEM PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-354510 VL - 26 IS - 3 SP - 035010-1 EP - 035010-7 AN - OPUS4-35451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aratsu, K. A1 - Takeya, R. A1 - Pauw, Brian Richard A1 - Hollamby, M.J. A1 - Kitamoto, Y. A1 - Shimizu, N. A1 - Takagi, H. A1 - Haruki, R. A1 - Adachi, S. A1 - Yagai, S. T1 - Supramolecular copolymerization driven by integrative self-sorting of hydrogen-bonded rosettes N2 - Molecular recognition to preorganize noncovalently polymerizable supramolecular complexes is a characteristic process of natural supramolecular polymers, and such recognition processes allow for dynamic self-alteration, yielding complex polymer systems with extraordinarily high efficiency in their targeted function. We herein show an example of such molecular recognition-controlled kinetic assembly/disassembly processes within artificial supramolecular polymer systems using six-membered hydrogen-bonded supramolecular complexes (rosettes). Electron-rich and poor monomers are prepared that kinetically coassemble through a temperature-controlled protocol into amorphous coaggregates comprising a diverse mixture of rosettes. Over days, the electrostatic interaction between two monomers induces an integrative self-sorting of rosettes. While the electron-rich monomer inherently forms toroidal homopolymers, the additional electrostatic interaction that can also guide rosette association allows helicoidal growth of supramolecular copolymers that are comprised of an alternating array of two monomers. Upon heating, the helicoidal copolymers undergo a catastrophic transition into amorphous coaggregates via entropy-driven randomization of the monomers in the rosette. KW - Self-assembly KW - Coaggregation KW - Scattering KW - Simulation KW - AFM PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506555 VL - 11 IS - 1 SP - Article number: 1623 PB - Springer Nature AN - OPUS4-50655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Becker, S. A1 - Lu, Z. A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - Stephan, D. A1 - von Klitzing, R. ED - Mechtcherine, V. ED - Khayat, K. ED - Secrieru, E. T1 - Particle Interactions in Silica Systems in Presence of Superplasticizer N2 - The flowability of cement paste is of great importance in today’s construction industry and is influenced by additives such as superplasticizers (SP). One type of SPs are polycarboxylate ether type SPs. These additives electrostatically bind with the negatively charged carboxylic groups at the backbone to the positively charged clinker phases. To model positively charged clinker phases with adsorbed SP, silicon Wafers are pre-coated with cationic polyethylenimine (PEI) and SP is adsorbed onto the coated surface (Si/PEI/SP). Two different polycarboxylate ether type (PCE) SP are compared – one for ready-mix concrete and one for precast concrete. In this preliminary study the interaction forces between Si/PEI/SP surface and a silica microsphere (colloidal probe) are investigated under mild physico-chemical conditions (pH *6, ion concentration <10−5 M) using Colloidal Probe Atomic Force Microscopy (CP-AFM). The interaction force between the model surfaces is attractive for low concentration of SP. The force changes from attractive to repulsive by increasing amount of SP. The force upon approach reveals a biexponential behavior. The exponential decay at large and short surface separations are attributed to electrostatic and steric interactions, respectively. The steric forces of the SP for ready-mix concrete show a steeper onset than the SP for precast concrete. The quantification of these interaction forces will be compared to rheological measurements of similar systems. Furthermore, the parameters will be changed to better approach the conditions in real systems, i.e. higher pH and ionic strength. This helps to understand how the forces on the nanoscale influence the macroscopic rheology. KW - Interfacial forces KW - Silica beads KW - Superplasticizer KW - AFM PY - 2019 SN - 978-3-030-22565-0 U6 - https://doi.org/10.1007/978-3-030-22566-7 SN - 2211-0844 VL - 23 SP - 571 EP - 579 PB - Springer ET - 1 AN - OPUS4-49183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Feltin, N. T1 - Hybrid metrology for microscopy of nanoparticles N2 - This presentation is structured in two parts: i) Hybrid metrology by combining SEM with AFM (N. Feltin) and ii) hybridization and corelative microscopy by SEM, STEM-in-SEM, TEM, EDS, Auger Electron Microscopy, TKD and more (D. Hodoroaba). The first part is focused on the metrological part of the hybrid measurement SEM-AFM, the second part offers some further possibilities of correlative microscopy of nanoparticles based on practical examples. T2 - EMPIR nPSize Training Course "Metrology for Measurement of Nanoparticle Size by Electron Microscopy and Atomic Force Microscopy" CY - Online meeting DA - 27.10.2020 KW - Nanoparticles KW - SEM KW - AFM KW - Metrology KW - Particle size distribution KW - Correlative imaging KW - STEM-in-SEM (TSEM) PY - 2020 AN - OPUS4-51476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pisonero, J. A1 - Traub, Heike A1 - Cappella, Brunero A1 - Álvarez-Llamas, C. A1 - Méndez, A. A1 - Richter, Silke A1 - Ruiz Encinar, J. A1 - Costa-Fernandez, J. M. A1 - Bordel, N. T1 - Exploring quantitative cellular biomaging and assessment of CdSe/ZnS quantum dots cellular uptake in single cells, using ns-LA-ICP-SFMS N2 - High spatially resolved quantitative bioimaging of CdSe/ZnS Quantum Dots uptake in two kinds of cells is investigated combining laser ablation inductively coupled plasma mass spectrometry and the spatially resolved analysis of dried pL-droplets from a solution with a known concentration of Quantum Dots. Single cells and dried pL-droplets are morphologically characterized by Atomic Force Microscopy. A number concentration of CdSe/ZnS QDs between 3.5 104 and 48 104 is estimated to be uptaken by several selected single cells, after being incubated in the presence of a QDs suspension added to a standard cell culture medium. Mono-elemental bioimaging at subcellular resolution seems to show a higher number concentration of the CdSe/ZnS QDs in the cytosol around the cell nucleus. KW - LA-ICP-SFMS KW - Fast single pulse response KW - Quantitative bioimaging KW - Cellular uptake KW - HT22 KW - HeLa KW - Single cell KW - pL-droplets KW - CdSe/ZnS quantum Dots KW - AFM PY - 2021 U6 - https://doi.org/10.1016/j.talanta.2021.122162 SN - 0039-9140 VL - 227 SP - 122162 PB - Elsevier B.V. AN - OPUS4-52121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wunderle, B. A1 - Onken, T. A1 - Heilmann, J. A1 - Silbernagl, Dorothee A1 - Arnold, J. A1 - Bieniek, T. A1 - Pufall, R. T1 - Reliability of sputtered thin aluminium films under accelerated stress testing by vibration loading and modeling N2 - Aluminium is still one of the most important contact metallisations for power electronic chips like MOSFETs or IGBTs. With a large difference in thermal expansion coefficients (CTEs) between aluminium and silicon and the temperatures generated in hot-spots during high power transients, these layers are prone to failure due to thermo-mechanical fatigue. Usually lifetime assessment is done by subjecting dedicated test specimens to standardised stress tests as e.g. active or passive thermal cycling. This paper proposes a novel method for accelerated stress testing and lifetime modelling of thin aluminium films in the high-cycle fatigue regime by isothermal mechanical loading. The proposed novel test method is suggested to complement or replace resource-demanding thermal cycling tests and allow simple in-situ monitoring of failure. T2 - 6th Electronic System-Integration Technology Conference (ESTC) CY - Grenoble, France DA - 13.09.2016 KW - Semiconductor device reliability KW - Thermal expansion KW - AFM KW - Vibrations KW - Nanoroughness KW - Accelerated stress testing KW - Active thermal cycling KW - Power electronic chips KW - Sputtered thin aluminium film KW - Thermomechanical fatigue PY - 2016 U6 - https://doi.org/10.1109/ESTC.2016.7764458 SP - 1 EP - 14 PB - IEEE AN - OPUS4-43595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Elert, Anna Maria T1 - Application of NanoIR interdisciplinary research at BAM N2 - Atomic force microscopy based Infrared spectroscopy (AFM-IR) is a quickly evolving technique that provides chemical analysis and compositional mapping with spatial resolution far below conventional optical diffraction limits. This is possible since the detection method is based on a very sharp AFM tip which starts to oscillate when the sample starts to thermally expand (the changed is caused by the absorption of IR wavelength) where the thermal expansion is related to the IR absorption. This presentation briefly described the application of that new technique from polymer characterization and utilization of AFM-IR in material research, up to life science applications. T2 - AFM-IR Workshop: Nanoscale IR Spectroscopy CY - Dresden, Germany DA - 29.11.2017 KW - NanoIR KW - AFM KW - Composite KW - Polyurethane PY - 2017 AN - OPUS4-43221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Hodoroaba, Vasile-Dan T1 - Project 15 Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension N2 - The progress in the VAMAS Project #15" Measurement of particle size and shape distribution of bipyramidal titania including deposition from liquid suspension" within TWA 34 Nanoparticle Populations is presented with highlight of the following points: - Determine and compare particle size and shape distribution by means of: • electron microscopy (SEM, TEM, STEM-in-SEM) • atomic force microscopy (AFM) • small angle X-ray scattering (SAXS) - Determine uncertainty induced by deposition protocol from liquid suspension with comparison to known values from a prior ILC with already deposited nanoparticles on TEM grids. - Provide comparative validation of protocols for the techniques other than TEM. T2 - VAMAS Regional Workshop 2023 CY - Online meeting DA - 24.01.2023 KW - Nanoparticles KW - VAMAS KW - Electron microscopy KW - AFM KW - SAXS KW - TiO2 PY - 2023 UR - https://www.bam.de/Content/EN/Events/2023/2023-01-24-vamas-regional-workshop.html AN - OPUS4-57220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Hodoroaba, Vasile-Dan T1 - Project 16 Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension N2 - The progress of the VAMAS Project 16 "Measurement of (relative) number concentration of bimodal silica nanoparticles including deposition from liquid suspension" in TWA 34 Nanoparticle Populations is presented. Follwowing points are discusssed: - Validate the performance of imaging methods to measure the relative number concentration • electron microscopy (SEM, TEM) and atomic force microscopy (AFM) • two modes of bimodal (30 and 60 nm) silica nanoparticles - Validate the performance of small angle X-ray scattering (SAXS) for the traceable measurement of the number concentration of the two modes. T2 - VAMAS Regional Workshop 2023 - What can pre-normative research do for industry? CY - Online meeting DA - 24.01.2023 KW - Nanoparticles KW - VAMAS KW - Inter-laboratory comparison KW - SiO2 KW - Electron microscopy KW - AFM PY - 2023 UR - https://www.bam.de/Content/EN/Events/2023/2023-01-24-vamas-regional-workshop.html AN - OPUS4-57221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Czerski, Jakub A1 - Mitoraj-Krolikowska, Marzena A1 - Godlewska, Elzbieta A1 - Wetzel, Annica A1 - Witt, Julia A1 - Ozcan, Ozlem A1 - Marzec, Mateusz A1 - Goly, Marcin T1 - Corrosion and passivation of AlCrFe2Ni2Mox high-entropy alloys in sulphuric acid N2 - Corrosion behaviour of AlCrFe2Ni2Mox (x = 0.0, 0.1, 0.15, 0.3 and 0.6) high-entropy alloys was investigated in a 0.1 M H2SO4 solution. Passive films formed upon anodic polarisation, built of Al-based inner layer and (Cr, Fe, Mo)-based outer layer, had good protective properties. In particular, they prevented corrosion of the (Al, Ni)-rich BCC-B2 phase, which was observed under open-circuit conditions. Moderate amounts of Mo, up to x = 0.3, positively affected the passivation ability of AlCrFe2Ni2. Significant changes in microstructure and phase composition of the alloy at higher Mo concentrations (x = 0.6) resulted in deterioration of its corrosion resistance. KW - EIS KW - Alloy KW - Sulphuric acid KW - AFM KW - Acid corrosion KW - Passive films PY - 2024 U6 - https://doi.org/10.1016/j.corsci.2024.111855 SN - 0010-938X VL - 229 SP - 1 EP - 17 PB - Elsevier Ltd. AN - OPUS4-59703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Focused ion beam techniques beyond the ordinary - Methodological developments within ADVENT N2 - This poster presents the focused ion beam preparation methodologies developed within the framework of the EU funded EURAMET project ADVENT (Advanced Energy-Saving Technology). It summarises the key breakthroughs achieved for various in situ investigation techniques, e.g. in situ experiments at the Synchrotron facility BESSY II (IR-SNOM and XRS), TEM and SMM instrumentation. The created experimental devices from diverse thin-film semiconductor materials paved the way to dynamic structural studies bearing the potential to determine nanoscale correlations between strain and electric fields and, moreover, for the fundamental development of new in situ capabilities. N2 - Dieses Poster zeigt die FIB Präparationstechniquen, die im Rahmen des EU-finanzierten EURAMET-Projekts ADVENT (Advanced Energy Saving Technology) entwickelt wurden. Es fasst die wichtigsten Errungenschaften zusammen, die für verschiedene in situ Untersuchungstechniken erzielt wurden, z.B. situ-Experimente in dem Synchrotronring BESSY II (IR-SNOM und XRS), in situ TEM Experimente und für die SMM Technik. Die experimentellen Probenstrukturen, die aus verschiedenen Dünnschicht-Halbleitermaterialien erzeugt wurden, ebneten den Weg für dynamische Strukturstudien, die das Potenzial haben, nanoskalige Korrelationen zwischen Dehnung und elektrischen Feldern zu bestimmen und darüber hinaus neue in situ Messmethoden zu entwickeln. T2 - Final Meeting CY - Online Meeting DA - 30.06.2020 KW - FIB KW - Sample preparation KW - In situ KW - TEM KW - AFM PY - 2020 AN - OPUS4-51606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -