TY - CHAP A1 - Browne, D. A1 - García-Moreno, F. A1 - Nguyen-Thi, H. A1 - Zimmermann, G. A1 - Kargl, F. A1 - Mathiesen, R. H. A1 - Griesche, Axel A1 - Minster, O. ED - Solanki, K. N. ED - Orlov, D. ED - Singh, A. ED - Neelameggham, N. R. T1 - Overview of In situ X-ray studies of light alloy solidification in microgravity N2 - Gravity has significant effects on alloy solidification, primarily due to thermosolutal convection and solid phase buoyancy. Since 2004, the European Space Agency has been supporting investigation of these effects by promoting in situ X-ray monitoring of the solidification of aluminium alloys on microgravity platforms, on earth, and in periodically varying g conditions. The first microgravity experiment-investigating foaming of liquid metals - was performed on board a sounding rocket, in 2008. In 2012 the first ever X-ray-monitored solidification of a fully dense metallic alloy in space was achieved: the focus was columnar solidification of an Al-Cu alloy. This was followed in 2015 by a similar experiment, investigating equiaxed solidification. Ground reference experiments were completed in all cases. In addition, experiments have been performed on board parabolic flights-where the effects of varying gravity have been studied. We review here the technical and scientific progress to date, and outline future perspectives. KW - Dendritic growth KW - Materials in space KW - Columnar and equiaxed structures PY - 2017 SN - 978-3-319-52392-7 SN - 978-3-319-52391-0 U6 - https://doi.org/10.1007/978-3-319-52392-7_80 SN - 2367-1181 SP - 581 EP - 590 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-39442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Farag, Zeinab A1 - Moustapha, M. A1 - Hidde, Gundula A1 - Friedrich, Jörg A1 - Azzam, M. A1 - Krüger, Simone ED - Mital, K.L. T1 - Promotion of Adhesion of Green Flame Retardant Coatings onto Polyolefins by Depositing Ultra-Thin Plasma Polymer Films N2 - Various methods have been used for introducing fire retardant additives into polymers. Deposition of thick fire retardant coatings directly onto polymer substrates is an alternative technique. An important advantage of the coating technique is the preservation of the physical and chemical integrity of the polymer material. Moreover, the fire retardancy of the polymer materials can be achieved following their production. Suitable coating materials are inorganics, intumescent, char-forming, oxygendiluting, and cooling or radical quenching layers. The most important problem is to achieve sufficient coating thickness to withstand the direct attack of flame and to protect the polymer bulk from pyrolysis, otherwise blistering of coating, caused by emitted pyrolysis gases, is often observed. To avoid blistering of coating, the adhesion between polyolefin substrate and fire retardant coating has to be extraordinarily high. In order to achieve such a high level of adhesion, the polymer surface has to be modified with adhesion-promoting functional groups. The deposition of thin plasma polymers as adhesion-promoting layers with NH2, OH or COOH groups has been the most suited method. These functional groups are able to form covalent bonds and other interactions between the fire-resistant coating and the plasma-modified polyolefin substrate. Additionally, the plasma polymer counteracts the strong mechanical stresses in the laminate on exposure to high temperatures by its flexibility. KW - Plasma KW - Adhesion PY - 2017 SN - 978-1-119-40748-5 SN - 978-1-119-40638-9 U6 - https://doi.org/10.1002/9781119407485 VL - 2 SP - 399 EP - 427 PB - Scrivener Publishing CY - Beverly, USA AN - OPUS4-47227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Resch-Genger, Ute ED - Schäferling, Michael T1 - Luminescent nanoparticles for chemical sensing and imaging N2 - The implementation of fluorescent methods is of outstanding importance in the field of optical chemical sensor Technology and biosciences. Their bioanalytical applications are manifold including fluorescence microscopy, fluorescence in situ hybridization, DNA sequencing, fluorescence-activated cell sorting, immunoassays, analysis of DNA and Protein microarrays, and quantitative PCR, just to name a few examples. Particularly, fluorescence microscopy is a valuable method in the versatile field of biomedical imaging methods which nowadays utilizes different fluorescence Parameters like emission wavelength/Color and lifetime for the discrimination between different targets. Sectional Images are available with confocal microscopes. Tissue, cells or single cellular compartments can be stained and visualized with fluorescent dyes and biomolecules can be selectively labeled with fluorescent dyes to Monitor biomolecular interactions inside cells or at Membrane bound receptors. On the other hand , fluorophores can act as indicator (or "molecular probe") to visualize intrinsically colorless and non-fluorescent ionic and neutral analytes such as pH, Oxygen (pO2), metal ions, anions, hydrogen peroxide or bioactive small organic molecules such as Sugars or nucleotides. Thereby, their photoluminescent properties (fluorescence or phoporescence intensity, exitation and/or Emission wavelength, emission lifetime or anisotropy) respond to the presence of these species in their immediate Environment. In general, the use of luminescent probes has the advantage that they can be delivered directly into the sample, and detected in a contactless remote mode. By now, these probes are often encapsulated in different types of nanoparticles (NPs) made from (biodegradable) organic polymers, biopolymers or inorganic materials like silica or bound to their surface. KW - Fluorescence KW - Upconversion KW - NIR KW - Sensor KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Semiconductor KW - Polymer KW - Silica KW - Imaging KW - Application KW - Dye KW - Quantum dot PY - 2017 SN - 978-3-319-48260-6 SN - 978-3-319-48259-0 U6 - https://doi.org/10.1007/978-3-319-48260-6_5 SN - 1573-8086 SP - 71 EP - 109 PB - SPRINGER INTERNATIONAL PUBLISHING AG CY - Cham, Schweiz AN - OPUS4-44011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -