TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Load analyses of welded high-strength steel structures using image correlation and diffraction techniques N2 - In an increasing number of modern steel applications, high-strength structural steel grades are demanded to meet specifications regarding a high load-bearing capacity and a low operating weight. Lightweight design rules enhance the safety requirements, especially for welded joints. Besides a higher cracking risk for high-strength steel welds, the formation of tensile residual stresses might lead to fracture due to overloading or premature failure if not adequately considered. In this study, a stress-strain analysis was conducted at component-related structures from S960QL using digital image correlation while preheating, welding and cooling adjacent to the weld seam. X-ray diffraction analysis of the local residual stresses in the weld seam showed a good comparability with global analyses using either a DIC system or a special testing facility, which allowed in situ measurements of welding loads. By analysing two different seam geometries, it could be shown that lower multi-axial stresses arise if a narrower weld groove is used. Comparative analyses revealed a direct correlation of the local residual stresses in the weld with transverse shrinkage restraint, whereas the residual stress level in the HAZ is significantly affected by the bending restraint of the weld construction and the occurring bending stresses, respectively. KW - Process parameters KW - Residual stresses KW - Restraint KW - GMAwelding KW - High-strength steels PY - 2018 DO - https://doi.org/10.1007/s40194-018-0566-x SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 3 SP - 459 EP - 469 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Steppan, E. A1 - Kannengießer, Thomas A1 - Steger, J. T1 - Hydrogen trapping in T24 Cr-Mo-V steel weld joints - microstructure effect vs. experimental influence on activation energy for diffusion N2 - Hydrogen-assisted cracking is a critical combination of local microstructure, mechanical load and hydrogen concentration. Welded microstructures of low-alloyed creep-resistant Cr-Mo-V steels show different hydrogen trapping kinetics. This influences the adsorbed hydrogen concentration as well as the diffusion by moderate or strong trapping. A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. Finally, realistic temperature assessment is mandatory for calculation of activation energy via TDA. KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Thermal desorption analysis KW - Welding KW - Microstructure KW - Diffusion PY - 2018 DO - https://doi.org/10.1007/s40194-017-0546-6 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 2 SP - 277 EP - 287 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-44505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Duprez, Lode T1 - Hydrogen distribution in multi-layer welds of steel S960QL N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa have increasing importance in steel construction and civil engineering. However, weld processing of those steels is a major challenge. The susceptibility for degradation of mechanical properties of weld joints significantly increases in presence of hydrogen and can result in hydrogen assisted cracking (HAC). Generally, risk for HAC increases with increasing yield strength of HSLA steels. To minimize the incidence of HAC, it is essential to gain knowledge about both the (1) absorbed hydrogen amount and its distribution in the weld seam and (2) options to lower the amount of introduced hydrogen. Existing standards recommend heat treatment procedures (interpass temperature or post weld heat treatment) to reduce the diffusible hydrogen concentration in weldments. In this context, different weld seam geometries should be considered. For HSLA steel fabrication weld processing with seam opening angles of 45° to 60° is typical. Modern weld technologies allow welding with seam opening angles of 30° - reduced welding time and costs. In the present study, the hydrogen distribution in multi-layer welds of a 960 MPa HSLA steel was analysed. Influence of different seam opening angles as well as heat input, interpass temperature and post weld heat treatments were investigated. The welded samples were quenched in ice water immediately after welding and subsequently stored in liquid nitrogen. After defined warming up, small specimens were machined from the weld seam by water jet cutting. The diffusible hydrogen concentration was measured by carrier gas hot extraction with coupled mass spectrometer. The results showed, that low heat input and post weld heat treatment procedures can lower hydrogen concentrations in welds. Furthermore, a gradient of the hydrogen concentration was identified with increasing weld pool depth. By varying the seam opening angles different hydrogen concentrations were measured. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen concentration KW - Welding KW - High-strength steel KW - Heat treatment KW - carrier gas hot extraction PY - 2018 SN - 978-9-08179-422-0 SP - P44 AN - OPUS4-45358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, L. A1 - Kannengießer, Thomas T1 - lnfluence of microalloy design on heat-affected zone toughness of S690QL steels N2 - Three high-strength Nb-,.Ti- and Ti+ V-bearing S690QL steels were welded to investigate and compare the effects of microalloy addition on heat-affected zone (HAZ) toughness. Charpy V notch impact tests from three microalloyed welds under different cooling rates have been performed. Fractographic examination shows that several factors, including large-sized grain, upper bainite or hard second phase, interact to determine brittle fracture and impaired toughness in Nb-bearing weld with high heat input. In contrast to this reduced toughness, Ti-bearing welds exhibits satisfied toughness regardless of at fast or slow cooling. This is attributed to its limited austenite grain and refines favorable intragranular acicular ferrite structure. Moreover, in the case of such refined structure as matrix, TiN particles are found to be irrelevant to the facture process. The crystallographic results also confirm that high-angle boundaries between fine ferrites plates provide effective barriers for crack propagation and contribute to improved toughness. KW - High-strength steels KW - Microalloyed steels KW - Toughness KW - Cooling rate KW - Microstructure PY - 2018 DO - https://doi.org/10.1007/s40194-018-0558-x VL - 62 IS - 2 SP - 339 EP - 350 PB - Springer CY - Heidelberg, Germany AN - OPUS4-44792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Griesche, Axel T1 - Tungsten inert gas bead-on-plate weld chemical composition analysis by laser-induced breakdown spectroscopy N2 - Chemical compositions of a weld can be varying locally as a result of the welding process. These local variations can be due to the vaporization of individual alloying elements. In this work, tungsten inert gas (TIG) bead-on-plate stainless steel welds of EN grade 1.4404 and 1.4435 were investigated using laser-induced breakdown spectroscopy (LIBS) on the completed welds. This study aims to reveal the welding parameters’ influence on the resulting local chemical compositions of the stainless steel welds. We demonstrated Mn vaporize before Cr due to its lower latent enthalpy of vaporization. Hence, Mn accumulates on the heat-affected zone (HAZ) both sides across the weld bead by being swept away through the circulation flow of the welding plasma. Additionally, increasing the heat input tends to enhance the accumulated Mn content on the HAZ as well as increasing the shielding gas flow rate. The results are in good agreement with the literature and proved that LIBS is an effective method to inspect completed welds. T2 - Symposium on Materials and Joining Technology CY - Magdeburg, Germany DA - 07.09.2020 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511595 DO - https://doi.org/10.1088/1757-899X/882/1/012023 SN - 1757-8981 SN - 1757-899X VL - 882 IS - 012023 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-51159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Ernst, W. A1 - Spindler, H. A1 - Kannengießer, Thomas T1 - Hydrogen-assisted cracking of GMA welded 960 MPa grade high-strength steels N2 - High-strength steels with yield strength of 960 MPa are susceptible to hydrogen-assisted cracking (HAC) during welding processing. In the present paper, the implant test is used to study HAC in a quenched and tempered steel S960QL and a high-strength steel produced by thermo-mechanical controlled process S960MC. Welding is performed using the gas metal arc welding process. Furthermore, diffusible hydrogen concentration (HD) in arc weld metal is determined. Based on the implant test results, lower critical stress (LCS) for complete fracture, critical implant stress for crack initiation, and embrittlement index (EI) are determined. At HD of 1.66 ml/100 g, LCS is 605 MPa and 817 MPa for S960QL and S960MC, respectively. EI is 0.30 and 0.46 for S960QL and S960MC, respectively. Fracture surfaces of S960QL show higher degradation with reduced deformation. Both, higher EI of S960MC and fractography show better resistance to HAC in the HAZ of S960MC compared to S960QL. KW - High-strength steel KW - Welding KW - Diffusible hydrogen KW - Hydrogen-assisted cracking KW - Heat-affected zone KW - Implant test PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510307 DO - https://doi.org/10.1016/j.ijhydene.2020.05.077 SN - 0360-3199 VL - 45 IS - 38 SP - 20080 EP - 20093 PB - Elsevier Ltd CY - Amsterdam, NL AN - OPUS4-51030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thomas, Maximilian A1 - Vollert, F. A1 - Weidemann, Jens A1 - Gibmeier, J. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Surface- and volume-based investigation on influences of different Varestraint testing parameters and chemical compositions on solidification cracking in LTT filler metals N2 - The subject of this study is how, and to what extent, Varestraint/Transvarestraint test results are influenced by both testing parameters and characteristics of evaluation methods. Several different high-alloyed martensitic LTT (low Transformation temperature) filler materials, CrNi and CrMn type, were selected for examination due to their rather distinctive solidification cracking behaviour, which aroused interest after previous studies. First, the effects of different process parameter sets on the solidification cracking response were measured using standard approaches. Subsequently, microfocus X-ray computer tomography (μCT) scans were performed on the specimens. The results consistently show sub-surface cracking to significant yet varying extents. Different primary solidification types were found using wavelength dispersive X-ray (WDX) analysis conducted on filler metals with varying Cr/Ni equivalent ratios. This aspect is regarded as the main difference between the CrNiand CrMn-type materials in matters of cracking characteristics. Results show that when it comes to testing of modern highperformance alloys, one set of standard Varestraint testing parameters might not be equally suitable for all materials. Also, to properly accommodate different solidification types, sub-surface cracking has to be taken into account. KW - Solidification cracking KW - Varestraint testing KW - MVT KW - LTT filler metal KW - Microfocus X-ray computer tomography (μCT) PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506039 DO - https://doi.org/10.1007/s40194-020-00895-2 VL - 64 SP - 913 EP - 923 PB - Springer Nature CY - Heidelberg, New York AN - OPUS4-50603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part I - Effect of heat control on welding stresses and stress relief cracking N2 - The avoidance of failures during the fabrication or operation of petrochemical reactors made of creep-resistant, low-alloy steels as 13CrMoV9-10 requires still research despite over 60 years of international investigations in the field of stress relief cracking. The quality of modern base materials and filler metals leads to the fact that previously known crack causes, such as impurities of S or P, recede into the background. Rather, the causes are increasingly to be found in the fabrication process. Investigations on the influence of heat control on the stresses in welded components and thus on the stress relief cracking sensitivity under realistic manufacturing conditions are not yet available. This work is subdivided in two parts. Part 1 of this study focused on the effect of heat control during submerged arc welding on the stresses. For this purpose, a testing facility was applied, which allows to observe the forces and moments accumulating during welding or heat treatment in a component-like specimen under shrinkage restraint. The stress acting in the specimen increases with higher preheat/interpass temperatures and higher heat input. During the heat treatment, the stresses are relieved. Nevertheless, cracks are formed already during heating. The total crack length correlates with the heat input. KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506271 DO - https://doi.org/10.1007/s40194-020-00875-6 SN - 1878-6669 VL - 64 IS - 5 SP - 807 EP - 817 PB - Springer CY - Berlin AN - OPUS4-50627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part II - Mechanisms of stress relief cracking during post weld heat treatment N2 - Welding of 13CrMoV9-10 vanadium steel requires care due to an increased susceptibility to stress relief cracking during post weld heat treatment. Previous research into the crack formation in creep-resistant steels has focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the crack formation during post weld heat treatment considering real-life restraint conditions. This work is subdivided in two parts. Part I showed that an increasing heat input during submerged arc welding under restraint led to an increasing stress level in the joint prior to the post weld heat treatment. The magnitude of stress relief cracking observed in the heat-affected zone after the post weld heat treatment is affected by the heat input. In Part II of this work, the cracks and the associated microstructure which occurred under restraint were studied. The application of a Special acoustic emission analysis indicated that the cracks formed in a temperature range between 300 and 500 °C during the post weld heat treatment. The toughness in the heat-affected zone of the restrained welds was affected by the welding heat input. Microstructural analyses of all specimens revealed accelerated aging due to precipitation of carbides during post weld heat treatment under restraint. KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506283 DO - https://doi.org/10.1007/s40194-020-00881-8 SN - 1878-6669 VL - 64 SP - 819 EP - 829 PB - Springer CY - Berlin AN - OPUS4-50628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Schröpfer, Dirk A1 - Lausch, T. T1 - Issues and challenges in component welding of high strength fine-grained structural steels N2 - When assessing the performance of welded components residual stresses are vital. The possibilities of transferring the real boundary conditions of welding, which influence the residual stress, into the laboratory are highlighted in this contribution. The potentials of a test system specially developed for this purpose are demonstrated. The component design induces global process-, geometry- and material-dependent stresses, which can be simulated and quantified in the system. In addition, the resulting local residual stress distribution can be exactly determined with high spatial resolution with the aid of X-ray diffraction. Examples are presented of how the conditions to be found during production are simulated in the laboratory. T2 - AJP 2019 CY - Ponta Delgada, Azores (Portugal) DA - 24.10.2019 KW - Residual stress KW - Welding KW - X-ray diffraction KW - Creep-resistant steel KW - Large-scale test PY - 2019 AN - OPUS4-50036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Lippold, J. ED - Boellinghaus, Thomas ED - Norrish, J. ED - Scotti, A. T1 - Hydrogen-assisted cracking in GMA welding of high-strength structural steels using the modified spray arc process N2 - High-strength structural steels are used in machine, steel, and crane construction with yield strength up to 960 MPa. However, welding of these steels requires profound knowledge of three factors in terms of avoidance of hydrogen-assisted cracking (HAC): the interaction of microstructure, local stress/strain, and local hydrogen concentration. In addition to the three main factors, the used arc process is also important for the performance of the welded joint. In the past, the conventional transitional arc process (Conv. A) was mainly used for welding of high-strength steel grades. In the past decade, the so-called modified spray arc process (Mod. SA) has been increasingly used for welding production. This modified process enables reduced seam opening angles with increased deposition rates compared with the Conv. A. Economic benefits of using this arc type are a reduction of necessary weld beads and required filler material. In the present study, the susceptibility to HAC in the heat-affected zone (HAZ) of the high-strength structural steel S960QL was investigated with the externally loaded implant test. For that purpose, both Conv. A and Mod. SA were used with same heat input at different deposition rates. Both conducted test series showed same embrittlement index “EI” of 0.21 at diffusible hydrogen concentrations of 1.3 to 1.6 ml/100 g of arc weld metal. The fracture occurred in the HAZ or in the weld metal (WM). However, the test series withMod. SA showed a significant extension of the time to failure of several hours compared with tests carried out with Conv. A. KW - High-strength steel KW - GMA welding KW - Diffusible hydrogen KW - Implant test KW - Fractography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515330 DO - https://doi.org/10.1007/s40194-020-00978-0 SN - 1878-6669 SN - 0043-2288 VL - 64 IS - 12 SP - 1997 EP - 2009 PB - Springer CY - Berlin Heidelberg AN - OPUS4-51533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Online-Observation of Martensite Formation by combined use of Synchrotron Diffraction and Dilatometry N2 - Welding residual stress engineering by means of an adjusted martensite phase transformation would be highly attractive as detrimental tensile residual stresses may be prevented already during welding without time and cost intensive post processing. The present study shows a synchrotron diffraction analysis of a martensitic steel subjected to thermo-mechanical load cycles. Experiments were conducted regarding the microstructural strain response during the austenite to martensite transformation. The strains are a function of the temperature and the specific loads applied during cooling. The relation between the transformation plasticity of the material, the amount of martensite formed and the arising strains can thus be assessed. The lattice plane specific strains were compared to experimental findings from (macro) dilatation tests. It is shown that the microscopic material behavior differs remarkably from the one observed on the macroscopic scale, what leads to characteristic residual stresses in the material. T2 - Visual-JW 2019 & WSE 2019 The 5th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation & The 8th International Conference of Welding Science and Engineering CY - Osaka, Japan DA - 21.11.2019 KW - Martensite KW - Synchrotron KW - Dilatometry KW - Residual stress KW - Phase transformation PY - 2019 SP - 83 EP - 84 PB - SEIEI Printing Co., Ltd CY - Osaka, Japan AN - OPUS4-49770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schroepfer, Dirk A1 - Hannemann, Andreas T1 - In-situ Observation of Stress Evolution and Cracking during High Strength Steel Welding N2 - Residual stresses are crucial when assessing the performance of welded components. The present work deals with the possibilities of transferring the real-life boundary conditions of welding, which influence the residual stress, into the laboratory. The possibilities of a test system with a load capacity of 2 MN specifically developed for online monitoring of stress formation and cracking are shown. Due to the structural design, global process, geometry and material-dependent stresses are induced, which can be quantified in-situ during welding and post weld heat treatment. Examples are presented how the conditions to be found during production are simulated in the laboratory. It is shown how welding residual stresses in high-strength steels are affected by the heat control. Elevated working temperatures significantly increase the tensile residual stresses in the heat affected zone (HAZ). The effect of mechanical stresses resulting from welding on stress relief cracking is demonstrated by the example of a creep resistant steel. Reheat cracks were monitored online during post weld heat treatment. T2 - Visual-JW 2019 & WSE 2019 The 5th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation & The 8th International Conference of Welding Science and Engineering CY - Osaka, Japan DA - 21.11.2019 KW - Residual stress KW - Restraint KW - Welding KW - Large-scale test KW - Reheat cracking PY - 2019 SP - 83 EP - 84 PB - SEIEI Printing Co., Ltd CY - Osaka, Japan AN - OPUS4-49773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schroepfer, Dirk T1 - In-situ Observation of Stress Evolution during High Strength Steel Welding N2 - Residual stresses are crucial when assessing the performance of welded components. The present work deals with the possibilities of transferring the real-life boundary conditions of welding, which influence the residual stress, into the laboratory. The possibilities of a test system with a load capacity of 2 MN specifically developed for online monitoring of stress formation and cracking are shown. Due to the structural design, global process, geometry and material-dependent stresses are induced, which can be quantified in-situ during welding and post weld heat treatment. Examples are presented how the conditions to be found during production are simulated in the laboratory. It is shown how welding residual stresses in high-strength steels are affected by the heat control. Elevated working temperatures significantly increase the tensile residual stresses in the heat affected zone (HAZ). The effect of mechanical stresses resulting from welding on stress relief cracking is demonstrated by the example of a creep resistant steel. Reheat cracks were monitored online during post weld heat treatment. T2 - Visual-JW 2019 & WSE 2019 The 5th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation & The 8th International Conference of Welding Science and Engineering CY - Osaka, Japan DA - 21.11.2019 KW - Residual stress KW - Restraint KW - Welding KW - Large-scale test KW - Reheat cracking PY - 2019 AN - OPUS4-49763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Rhode, Michael A1 - Wimpory, R. C. A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part III - Assessment of residual stresses from small-scale to real component welds N2 - For higher operational temperatures and pressures required in petrochemical plants, the modified 13CrMoV9-10 steel was developed providing high resistance against creep and compressed hydrogen. Extreme care during the welding procedure is necessary for this steel, attributed to low toughness, high strength in as-welded state, and increased susceptibility to stress relief cracking (SRC) during post-weld heat treatment (PWHT). Previous research of SRC in creep-resistant steels discussed mainly thermal and metallurgical factors. Few previous findings addressed the influences of welding procedure on crack formation during PWHT considering real-life manufacturing conditions. These investigations focus on effects of welding heat control on stresses during welding and subsequent PWHT operations close to realistic restraint and heat dissipation conditions using a special 3D testing facility, which was presented in parts I and II of this contribution. Part III addresses investigations on residual stress evolution affecting crack formation and discusses the transferability of results from large-scale testing to laboratory-scale. Experiments with test set-ups at different scales under diverse rigidity conditions and an assessment of the residual stresses of the weld-specimens using X-ray (surface near) and neutron diffraction analysis (bulk) were performed. This study aims to provide a way of investigating the SRC behaviour considering component-specific residual stresses via small-scale testing concepts instead of expensive weld mock-ups. KW - Welding KW - Creep-resistant steel KW - Residual stresses KW - Post-weld heat treatment KW - Stress relief cracking PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524403 DO - https://doi.org/10.1007/s40194-021-01101-7 SN - 1878-6669 VL - 65 SP - 1671 EP - 1685 PB - Springer CY - Berlin AN - OPUS4-52440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Börner, Andreas A1 - Gustus, R. A1 - Kannengießer, Thomas A1 - Wesling, V. A1 - Maus-Friedrichs, W. T1 - Surface finishing of hard-to-machine cladding alloys for highly stressed components N2 - The supply and processing of materials for highly stressed components are usually cost-intensive. Efforts to achieve cost and resource efficiency lead to more complex structures and contours. Additive manufacturing steps for component repair and production offer significant economic advantages. Machining needs to be coordinated with additive manufacturing steps in a complementary way to produce functional surfaces suitable for the demands. Regarding inhomogeneity and anisotropy of the microstructure and properties as well as production-related stresses, a great deal of knowledge is still required for efficient use by small- and medium-size enterprises, especially for the interactions of subsequent machining of these difficult-to-machine materials. Therefore, investigations on these influences and interactions were carried out using a highly innovative cost-intensive NiCrMo alloy (IN725). These alloys are applied for claddings as well as for additive component manufacturing and repair welding using gas metal arc welding processes. For the welded specimens, the adequate solidification morphology, microstructure and property profile were investigated. The machinability in terms of finishing milling of the welded surfaces and comparative analyses for ultrasonic-assisted milling processes was examined focussing on surface integrity. It was shown that appropriate cutting parameters and superimposed oscillating of the milling tool in the direction of the tool rotation significantly reduce the mechanical loads for tool and workpiece surface. This contributes to ensure a high surface integrity, especially when cutting has to be carried out without cooling lubricants. KW - WAAM KW - IN725 KW - Machining KW - Ultrasonic-assisted milling KW - Residual stresses KW - Cutting forces KW - Surface integrity KW - Microstructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524872 DO - https://doi.org/10.1007/s00170-021-06815-y VL - 114 IS - 5-6 SP - 1427 EP - 1442 PB - Springer AN - OPUS4-52487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Jacobsen, Lars A1 - Griesche, Axel A1 - Michalik, Katarzyna A1 - Mory, David A1 - Kannengießer, Thomas T1 - In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding N2 - A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding.Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence ofweld defects and changes in the chemical composition in theweld pool or in the two-phase regionwhere solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and MnII characteristicemissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observedwith the termination of thewelding plumedue to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels,Mnaccumulations on both sides of theweld could be detected between the heat affected zone (HAZ) and the base material. T2 - th International Conference on Laser-Induced Breakdown Spectroscopy (LIBS) CY - Chamonix-Mont-Blanc, France DA - 12.09.2016 KW - LIBS KW - TIG KW - Welding KW - Austenitic KW - Stainless steels KW - Chemical composition KW - In situ KW - Measurement PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S0584854717301064 DO - https://doi.org/10.1016/j.sab.2017.11.012 SN - 0584-8547 VL - 139 SP - 50 EP - 56 PB - Elsevier CY - Amsterdam, Niederlande AN - OPUS4-43122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schröpfer, Dirk A1 - Dixneit, Jonny A1 - Hannemann, Andreas A1 - Kannengießer, Thomas ED - Neu, Richard W. ED - Totten, George E. T1 - From the field to the lab: Real scale assessment of stresses in welded components N2 - Residual stresses are crucial when assessing the performance of welded components. The present work deals with the possibilities of transferring the real-life boundary conditions of welding, which influence the residual stress, into the laboratory. The possibilities of a test system specifically developed for this purpose with a maximum capacity of 2 MN are shown. Due to the structural design, global process, geometry and material-dependent stresses are induced, which can be simulated and quantified within the system. Additionally, X-ray diffraction can be applied to determine the resulting local residual stress distribution precisely with high spatial resolution. Two examples are presented how the conditions to be found during production are simulated in the laboratory. It is shown how welding residual stresses in high-strength steels are affected by the heat control. It was possible to clarify why elevated working temperatures significantly increase the bending stresses in the welded joint and therefore the tensile residual stresses in the heat affected zone (HAZ). The effect of a heat treatment applied under mechanical stress resulting from welding is demonstrated by the example of a creep resistant steel. Reheat cracking is significantly increased in this case compared to small scale laboratory based tests. KW - Residual stress KW - Welding KW - Large-scale test KW - Creep resistant steel KW - High strength steel PY - 2018 DO - https://doi.org/10.1520/MPC20170111 SN - 2379-1365 VL - 7 IS - 4 SP - 574 EP - 593 PB - ASTM International CY - West Conchohocken AN - OPUS4-46662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Formation of multi-axial welding stresses due to material behaviour during fabrication of high-strength steel components N2 - Today, an expanding application of high-strength steels in modern welded constructions can be observed. The economical use of these steel grades largely depends on the strength and reliability of the weldments. Therefore, the special microstructure and mechanical properties of these grades have to be taken into account by keener working ranges regarding the welding parameters. However, performance and safety of welded components are strongly affected by the stresses occurring during and after welding fabrication locally in the weld seam and globally in the whole component, especially if the shrinkage and distortion due to welding are restrained. Some extensive studies describe the optimization of the welding stresses and the metallurgical effects regarding an adapted welding heat control. Lower working temperatures revealed to be particularly effective to reduce the local and global welding-induced residual stresses of the complete weld significantly. However, decreased interpass temperatures cause concurrently higher stresses during welding fabrication. This work shows strategies to reduce these in-process stresses. With help of multi-axial welding stress analyses in component-related weld tests, using a special 2-MN-testing facility, differences in stress build-up are described in detail for root welds, filler layers and subsequent cooling to ambient temperature. KW - Residual stresses KW - GMA welding KW - Restraint KW - High-strength steels KW - Process parameters PY - 2018 DO - https://doi.org/10.1007/s40194-018-0650-2 SN - 0043-2288 SN - 1878-6669 VL - 63 IS - 1 SP - 43 EP - 51 PB - Springer AN - OPUS4-46604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Hannemann, Andreas A1 - Kannengießer, Thomas ED - Seefeldt, Marc T1 - In-situ determination of critical welding stresses during assembly of thick-walled components made of high-strength steel N2 - The performance and safety of welded high-strength low-alloyed steel (HSLA) components are substantially affected by the stresses occurring during and after welding fabrication, especially if welding shrinkage and distortion are severely restrained. The surrounding structure of the whole component affects loads in the far-field superimposing with welding stresses in the near-field of the weld. In this study a unique testing facility was used to restrain shrinkage and bending while analyse multiaxial far-field loads (max. 2 MN) during assembly of thick-walled component. A novel approach for the assessment of the in-situ-measured far-field data in combination with the actual weld geometry was elaborated. For the first time, analyses of the global bending moments of restrained welds based on the neutral axis of the actual weld load bearing section were achieved. Hence, far-field measurements offered the possibility to determine critical near-field stresses of the weld crosssections for the entire joining process. This work presents the approach for far-to-near field in-situ determination of stresses in detail for the 2-MN-testing system based on an extensive experimental work on HSLA steel welds, which demonstrates sources and consequences of these high local welding stresses. Thus, it was clarified, why the first weld beads are crucial regarding welding stresses and cold cracking, which is well known, but has never been measured so far. Accompanying analyses using X-ray diffraction (XRD) after welding show effects on local residual stress distributions. These analyses indicated viable prospects for stress reduction during assembly of thick-walled HSLA steel components. T2 - European Conference on Residual Stresses 2018 - ECRS-10 CY - Leuven, Belgium DA - 11.09.2018 KW - Residual stress KW - Welding KW - Large-scale test KW - X-ray diffraction KW - HSLA steel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-466053 SN - 978-1-9452-9188-3 SN - 978-1-9452-9189-0 DO - https://doi.org/10.21741/9781945291890-30 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 191 EP - 196 PB - Materials Research Forum LLC CY - Millersville, PA, USA AN - OPUS4-46605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Schroepfer, Dirk A1 - Steger, J. A1 - Kannengießer, Thomas ED - Seefeldt, M. T1 - Residual stress formation in component related stress relief cracking tests of a welded creep-resistant steel N2 - Submerged arc welded (SAW) components of creep-resistant low-alloyed Cr-Mo-V steels are used for thick-walled heavy petrochemical reactors (wall-thickness up to 475 mm) as well as employed in construction of modern high-efficient fossil fired power plants. These large components are accompanied by significant restraints during welding fabrication, especially at positions of different thicknesses like welding of nozzles. As a result, residual stresses occur, playing a domi-nant role concerning so-called stress relief cracking (SRC) typically during post weld heat treat-ment (PWHT). Besides specific metallurgical factors (like secondary hardening due to re-precipitation), high tensile residual stresses are a considerable influence factor on SRC. For the assessment of SRC susceptibility of certain materials mostly mechanical tests are applied which are isolated from the welding process. Conclusions regarding the influence of mechanical factors are rare so far. The present research follows an approach to reproduce loads, which occur during welding of real thick-walled components scaled to laboratory conditions by using tests designed on different measures. A large-scale slit specimen giving a high restraint in 3 dimensions by high stiffness was compared to a medium-scale multi-pass welding U-profile specimen showing a high degree of restraint in longitudinal direction and a small-scale TIG-re-melted specimen. The small-scale specimens were additionally subjected to mechanical bending to induce loads that are found during fabrication on the real-scale in heavy components. Results show for all three cases compa-rable high tensile residual stresses up to yield strength with high gradients in the weld metal and the heat affected zone. Those high tensile stresses can be significant for cracking during further PWHT. T2 - European Conference on Residual Stresses 2018 - ECRS-10 CY - Leuven, Belgium DA - 11.09.2018 KW - Welding KW - Residual stresses KW - Stress Relief Cracking (SRC) KW - Creep-resistant steel KW - Post Weld Heat Treatment (PWHT) PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459683 SN - 978-1-9452-9188-3 SN - 978-1-9452-9189-0 DO - https://doi.org/10.21741/9781945291890-29 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 185 EP - 190 PB - Materials Research Forum LLC CY - Millersville, PA, USA AN - OPUS4-45968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dixneit, Jonny A1 - Vollert, F. A1 - Kromm, Arne A1 - Gibmeier, J. A1 - Hannemann, Andreas A1 - Fischer, Tobias A1 - Kannengießer, Thomas T1 - In situ analysis of the strain evolution during welding using low transformation temperature filler materials N2 - Compared to conventional welding consumables using low transformation temperature (LTT) filler materials is an innovative method to mitigate tensile residual stresses due to delayed martensite transformation of the weld. For the effective usage of LTT filler materials, a deeper understanding of the complex processes that lead to the final residual stress state during multipass welding is necessary. Transformation kinetics and the strain evolution of multi-pass welds during welding were investigated in situ at the beamline HEMS@PETRAIII, Germany. Compared to conventional welds, the total strain was reduced and compression strain was achieved when using LTT filler materials. For an optimal use of the LTT effect in the root of multi-pass welds, the alloying concept must be adapted taking care of dilution. KW - Low transformation temperature filler materials KW - Synchrotron diffraction KW - Phase transformation KW - Multi-pass welding KW - ADXRD PY - 2018 DO - https://doi.org/10.1080/13621718.2018.1525150 SN - 1362-1718 SN - 1743-2936 VL - 24 IS - 3 SP - 243 EP - 255 PB - Taylor & Francis AN - OPUS4-46039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Schaupp, Thomas A1 - Münster, C. A1 - Mente, Tobias A1 - Kannengießer, Thomas A1 - Böllinghaus, Thomas T1 - Hydrogen determination in welded specimens by carrier gas hot extraction - a review on the main parameters and their effects on hydrogen measurement N2 - Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in weld joints using a thermal conductivity detector (TCD) for hydrogen measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries (ISO 3690 type B and small cylindrical samples), and factors that additionally influence hydrogen determination. They are namely specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PI-furnace controller, as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up to the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by Evaluation of the recorded data. Generally, independent temperature measurement with dummy specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA). KW - Hydrogen KW - Carrier gas hot extraction KW - Experimental design KW - Thermal conductivity device PY - 2019 DO - https://doi.org/10.1007/s40194-018-0664-9 SN - 0043-2288 VL - 63 IS - 2 SP - 511 EP - 526 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-47603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Lippold, J. ED - Boellinghaus, Thomas ED - Richardson, I. T1 - Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa are gaining popularity in civil engineering and construction of heavy vehicles. With increasing yield strength, the susceptibility for degradation of the mechanical properties in the presence of diffusible hydrogen, i.e., hydrogen-assisted cracking (HAC), generally increases. HAC is a result of the critical interaction between local microstructure, mechanical load, and hydrogen concentration. In existing standards for welding of HSLA-steels, recommendations including working temperatures and dehydrogenation heat treatment (DHT) are given to Limit the amount of introduced hydrogen during welding. These recommendations are based on investigations into conventional arc welding processes. In the past decade, modern weld technologies were developed to enable welding of narrower weld seams with V-grooves of 30°, e.g., the modified spray arc process. In that connection, a reduced number of weld runs and weld volume are important technical and, economic benefits. In the present study, the hydrogen distribution in S960QL multi-layer welds with thickness of 20 mm was analyzed. The influence of different weld seam opening angles, heat input, working temperature and DHT were investigated. The results show that weldments with narrow grooves contained an increased amount of diffusible hydrogen. Hydrogen concentration has been reduced by decreasing both the heat input and working temperature. Hydrogen-free weldments were only achieved via subsequent DHT after welding. Furthermore, hydrogen distribution was experimentally determined across the weld seam thickness in HSLA gas metal arc welded multi-layer welds for the first time. KW - Hydrogen KW - GMAW KW - High-strength steels KW - Heat control KW - Heat treatment PY - 2019 DO - https://doi.org/10.1007/s40194-018-00682-0 SN - 0043-2288 SN - 1878-6669 VL - 63 IS - 3 SP - 607 EP - 616 PB - Springer CY - Berlin Heidelberg AN - OPUS4-47878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Schaupp, Thomas A1 - Kannengießer, Thomas T1 - Welding stress control in high-strength steel components using adapted heat control concepts N2 - High-strength steels are increasingly applied in modern steel constructions to meet today’s lightweight requirements. Welding of these steels demands a profound knowledge of the interactions between the welding process, cooling conditions, heat input, and the resulting metallurgical occurrences in the weld and its vicinity. Additionally, welding stresses may be detrimental for the safety and performance of high-strength steel component welds during fabrication and service, especially due to the high yield ratio. For a development of strategies to adjust welding heat control, all these effects should be considered, to reach a complete exploitation of the high-strength steel potential. In recent researches at BAM, multilayer GMAW experiments were performed with high-strength steels, in which cooling conditions and resulting microstructure were analyzed for varied heat control parameters. The application of a unique 3d-operating testing facility and X-ray diffraction measurements allowed the analysis of local stresses in the weld while welding and cooling under component relevant shrinkage restraints. As a result, correlations between material behavior, welding, and cooling condition and the arising multi-axial stresses and forces were found. Based on this study, statements for the development of adapted heat control concepts were derived, which are presented by means of specific analysis examples. KW - Residual stresses KW - GMA welding KW - Restraint KW - High-strength steels KW - Process parameters PY - 2019 DO - https://doi.org/10.1007/s40194-018-00691-z SN - 0043-2288 VL - 63 IS - 3 SP - 647 EP - 661 PB - Springer AN - OPUS4-48006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Werner, Tiago A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post-laser powder bed fusion stress-relieve treatments of stainless steel 316L N2 - This study reports on the stress relaxation potential of stress-relieving heat treatments for laser powder bed fused 316L. The residual stress is monitored non-destructively using neutron diffraction before and after the heat treatment. Moreover, the evolution of the microstructure is analysed using scanning electron microscopy. The results show, that a strong relaxation of the residual stress is obtained when applying a heat treatment temperature at 900°C. However, the loss of the cellular substructure needs to be considered when applying this heat treatment strategy. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Projekt AGIL - Alterung additiv gefertigter metallischer Materialien und Komponenten PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536045 DO - https://doi.org/10.1007/s11661-021-06472-6 SN - 1543-1940 VL - 52 IS - 12 SP - 5342 EP - 5356 PB - Springer CY - Boston AN - OPUS4-53604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels—part 1: restraint and cold cracking risk N2 - AbstractThe sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures, like mobile or ship cranes. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process. However, manufacturers hardly have any information about these issues and there is a lack of recommendations and guidelines to take these safety-relevant aspects into account in adequate repair concepts. The aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines to avoid cold cracking, damage and expensive reworking especially for high-strength steels. Part 1 of this study involves systematic investigations of influences of shrinkage restraint during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures. The quantification of the shrinkage restraint of repair weld joints was achieved by means of experimental and numerical restraint intensity analysis. In welding experiments with self-restrained slot specimens, restraint intensity and introduction of hydrogen via the welding arc using anti spatter spray were varied systematically to analyse the effect on welding result, residual stresses and cold cracking. It could be shown that increasing restraint intensities result in significantly higher transverse residual stress levels. In the case of hydrogen introduction S500MLO showed no cold cracking independent of the restraint conditions. However, S960QL was found to be considerably cold cracking sensitive if hydrogen is introduced. With increasing restraint intensity length and number of cold cracks increases significantly. Part 2 [1] of this study is focussed on microstructure and residual stresses due to gouging and stress optimization via adequate heat control parameters in repair welding. KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595212 DO - https://doi.org/10.1007/s40194-024-01691-y SN - 0043-2288 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels—part 2: heat control and stress optimization N2 - In welding of high-strength steels, e.g. for foundations and erection structures of wind energy plants, unacceptable defects can occasionally be found in the weld area, which should be removed by thermal gouging and subsequent re-welding. High shrinkage restraint of repair welds may lead to crack formation and component failure, predominantly in interaction with degraded microstructures and mechanical properties due to repair cycles. This study aims for elaboration of recommendations for repair concepts appropriate to the stresses and materials involved to avoid cold cracking, damage and expensive reworking. In part 1 [1] of this study, systematic investigations of influences of shrinkage restraint on residual stresses and cold cracking risk during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures were focussed. In this part 2, the microstructure, particularly hardness, and residual stresses due to gouging and influences of heat control parameters in repair welding are analysed. A clear reduction in residual stress after gouging can be observed, especially for the specimens with restrained transverse shrinkage. Gouging to a depth of approx. 2/3 of the seam height does not lead to a complete relaxation of the observed reaction forces. Particularly for the higher strength steel S960QL, there are pronounced areas influenced by the gouging process in which a degradation of the microstructure and properties should be assumed. Overall, the repair welds show a significant increase in the width of the weld and HAZ compared to the original weld, especially in the case of S960QL/G89. The repair welds show higher welding-induced stresses than the original welds, especially in the areas of the HAZ and the base metal close to the weld seam. This behaviour can be attributed overall to increased restraint conditions due to the remaining root weld or shorter gouge grooves. In good agreement with earlier investigations, the residual stresses transverse to the weld can be significantly reduced by upwardly limited working or interpass temperatures, and the reaction stresses resulting from high restraint conditions can be effectively counteracted. The influence of the heat input on the stress formation is low compared to the interpass temperature for both test materials. KW - Repair-welding KW - Wind Energy KW - High-strength steels KW - Cold cracking KW - Residual stresses KW - Offshore steels PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600259 DO - https://doi.org/10.1007/s40194-024-01731-7 SN - 0043-2288 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-60025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schubnell, J. A1 - Konidena, S. K. A1 - Jung, M. A1 - Braun, M. A1 - Ehlers, S. A1 - Madia, Mauro A1 - Kannengießer, Thomas A1 - Löschner, D. T1 - Approach for the probabilistic fatigue assessment of welded joints based on the local geometry of the weld seam N2 - Welded joints show large variation of the weld toe geometry along the weld seam, which is one important reason for the comparably large scatter in fatigue life. Therefore, it is crucial to take the local geometry at the weld toe into account, to reduce the conservatism in fatigue assessment of welded joints. This study is based on the IBESS procedure for the calculation of the fatigue strength, whereby the evaluation of local geometrical parameters is carried out by means of 3D surface scans. The approach is validated against 26 fatigue test series. The fatigue life is in general overpredicted, whereas good agreement is achieved for high stress ratio (R = 0.5). A sensitivity analysis conducted with IBESS shows that weld toe radii ρ < 2 mm and flank angle α < 30° have a significant influence on the calculated fatigue strength. In contrast to this, no strong correlation between ρ and the fatigue strength was determined experimentally in this study. KW - 3D Scanning KW - Fatigue Strength KW - Fracture Mechanics KW - IBESS Approach KW - Local Weld Geometry KW - Welded Joints PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585700 DO - https://doi.org/10.1111/ffe.14170 SN - 8756-758X SP - 1 EP - 20 PB - Wiley AN - OPUS4-58570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, Julien A1 - Hübler, Daniela A1 - Schröpfer, Dirk A1 - Börner, Andreas A1 - Kannengießer, Thomas ED - Hanke, S. T1 - Wear behavior of innovative niobium carbide cutting tools in ultrasonic-assisted finishing milling N2 - The resources of niobium exceed the ones of tungsten by an order of magnitude. With 92%, Brazil is today the main global producer of niobium. Hence, niobium carbides (NbC) are a sustainable and economic alternative to conventionally used cutting materials, especially tungsten carbides (WC). Moreover, NbC can be used in Ni alloy matrix and thus offer significant advantages by substituting WC in Co matrix as cutting materials in terms of health risks and raw material price and supply risk. Based on recent studies which found an increased performance of NbC compared to WC cutting tools in machining higher strength steels, the composition NbC12Ni4Mo4VC was chosen for finish machining of a high-strength steel S960QL in this study. The experiments were carried out on an ultrasonic-assisted 5-axis milling machine using NbC tools specially made to benchmark them with commercially available coated WC cutting inserts. In addition, the influence of a coating system for the NbC inserts is tested and evaluated for its performance in the cutting process. Tool wear and cutting force analyses are implied to identify optimal parameter combinations as well as tool properties for the novel NbC tool. Together with the oscillation of ultrasonic-assisted milling, the loads on the component surface and the tool can be reduced and the wear behavior of the novel NbC tool can be refined. These milling tests are accompanied by standardized wear tests, i.e., pin-on-disc, between the aforementioned material combinations, and the results are correlated with each other. Finally, the behavior when using hard-to-cut materials such as Ni alloys, or innovative materials such as iron aluminide is also being tested, as these are constantly in the focus of machining optimization. With this strategy, comprehensive knowledge is achievable for future efficient application of NbC for milling tools, which have already been researched for decades using WC. T2 - 24th International Conference on Wear of Materials CY - Banff, Canada DA - 16.04.2023 KW - Niobium carbide KW - Cutting tool KW - Ultrasonic-assisted milling KW - Tool wear PY - 2023 DO - https://doi.org/10.1016/j.wear.2023.204722 SN - 0043-1648 VL - 522 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-57561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Optimisation of surface residual stresses using ultrasonic‑assisted milling for wire‑arc additive manufactured Ni alloy components N2 - Nickel alloys are cost intensive materials and generally classified as difficult-to-cut material. However, machining of these materials is needed especially in case of alloy 36 (1.3912), which is commonly used in mould construction for the production of fibre-reinforced composites. With regard to repair, modification and manufacturing of such components, additive manufacturing offers significant economic advantages. Nevertheless, subsequent machining steps are needed to achieve the final component contour and defined surface conditions. Dependent on the material and machining process conditions, detrimental tensile residual stresses may be the result on the machined surface, having negative impact on the component performance and safety. In this investigation, machining experiments were carried out on wire arc additive manufactured components made of alloy 36, varying the cutting speed and the feed rate. In addition, the conventional milling process (CM) was compared with a modern, hybrid machining process, the ultrasonic-assisted milling (US). The cutting forces and the surface-near residual stresses were analysed using X-ray diffraction. A significant improvement of the machinability as well as the surface integrity by using the ultrasonic assistance was observed, especially at low cutting speeds. The CM induced mainly tensile residual stresses, the US mainly compressive residual stresses. KW - Surface integrity KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Ni alloy KW - Alloy 36 PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575246 DO - https://doi.org/10.1007/s00170-023-11326-z SN - 1433-3015 VL - 126 IS - 9 SP - 4191 EP - 4198 PB - Springer Nature AN - OPUS4-57524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Brackrock, Daniel A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Component test for the assessment of delayed hydrogen-assisted cracking in thick-walled SAW joints for offshore applications N2 - Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods, or jackets. These components are typically constructed using submerged arc welding (SAW) with high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen-assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicates the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam/layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled with over 20 passes and a seam length of 1000 mm. Additional welded stiffeners simulated the effect of a high restraint, to achieve critical HAC conditions. The necessity of a minimum waiting time (MWT) before the NDT can be conducted (to exclude HAC) was critically verified by the application of ultrasonic testing of the welded joint at different time-steps of the NDT of up to 48 h after the completion welding. The residual stresses were determined by a robot XRD goniometer. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modeling allowed the qualitative estimation of the hydrogen diffusion in the weld. No noticeable HAC occurrence was identified and confirms the high cracking resistance of the investigated material. Finally, the applicability of the MWT concept should be critically discussed. KW - Hydrogen KW - Cold cracking KW - Minimum Waiting Time KW - Offshore steel grade KW - Component test PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591981 DO - https://doi.org/10.1007/s40194-023-01658-5 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-59198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Czeskleba, Denis A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Investigation of stress relief crack susceptibility of CrMoV steels coarse grain HAZ via simulation of uniaxial stress conditions during PWHT N2 - Creep-resistant steels such as the 13CrMoV9-10, used in the construction of thick-walled pressure vessels, are most commonly submerged arc welded (SAW). These steels can develop stress relief cracks (SRC) if the mandatory post weld heat treatment (PWHT) is performed improperly. Current PWHT parameters, such as heating rate and holding time at a specific holding temperature, are based on both empirical experience and conventional free shrinking welding experiments to characterize the SRC-susceptibility of the weld. These cannot adequately depict the higher residual stresses caused by the structurally induced stiffness of the surrounding construction. This study discusses the development of a repeatable, precise, and time-efficient methodology to study the effects of different stress levels and heating rates on the SRC susceptibility of the coarse grain heat-affected zone (CGHAZ). For that purpose, samples were thermically treated to simulate a coarse grain heat-affected zone (CGHAZ) and subsequently exposed to representative levels of stress during the heating phase of a PWHT. The recorded stress and heating rate–dependent strains were mathematically analyzed via curve tracing/calculus to identify interdependent effects. This procedure facilitates the measurement of material characteristics such as carbide growth on grain boundaries at the µm-scale via an integrated value over the entire sample volume. The first and second derivatives show a slight, precipitate-dependent, increase in hardness of the sample, depending on the heating rate and applied stress. This new methodology generates an improved assessment of the SRC susceptibility of SAW microstructures of creep-resistant CrMoV steels. KW - Submerged arc welding KW - Creep-resistant steel KW - Stress relief cracking KW - Component-like test KW - Post weld heat treatment PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576007 DO - https://doi.org/10.1007/s40194-023-01539-x SN - 0043-2288 SP - 1 EP - 9 PB - Springer Nature CY - Basel (CH) AN - OPUS4-57600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Hensel, J. T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - Wire arc additive manufacturing (WAAM) enables the efficient production of weight-optimized modern engineering structures. Further increases in efficiency can be achieved by using high-strength structural steels. Commercial welding consumables for WAAM are already available on the market. Lack of knowledge and guidelines regarding welding residual stress and component safety during production and operation leads to severely limited use for industry applications. The sensitive microstructure of high-strength steels carries a high risk of cold cracking; therefore, residual stresses play a crucial role. For this reason, the influences of the material, the WAAM process, and the design on the formation of residual stresses and the risk of cold cracking are being investigated. The material used has a yield strength of over 800 MPa. This strength is adjusted via solid solution strengthening and a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on the residual stresses. The focus of the present investigation is on the additive welding parameters and component design on their influence on hardness and residual stresses, which are analyzed by means of X-ray diffraction (XRD). Reference specimens (hollow cuboids) are welded fully automated with a systematic variation of heat control and design. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. Increased heat input leads to lower tensile residual stresses which causes unfavorable microstructure and mechanical properties. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. KW - DED-arc KW - Additive manufacturing KW - High-strength steel filler metal KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572698 DO - https://doi.org/10.1007/s40194-023-01503-9 SN - 1878-6669 VL - 67 IS - 4 SP - 987 EP - 996 PB - Springer CY - Berlin AN - OPUS4-57269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Evans, Alexander A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Pirling, T. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Triaxial Residual Stress in Laser Powder Bed Fused 316L: Effects of Interlayer Time and Scanning Velocity N2 - The triaxial distribution of the residual stress in laser powder bed fused austenitic steel 316L was determined by X-ray and neutron diffraction. The residual stress analysis results were linked to the thermal history of the specimens, which were manufactured with varying inter-layer-times and scanning velocities. A clear link between the in-process temperature of the specimens and the residual stress was found, based on in-situ monitoring data. KW - Stainless Steel KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542620 DO - https://doi.org/10.1002/adem.202101330 SP - 1 EP - 13 PB - Wiley-VCH GmbH AN - OPUS4-54262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -